Heteropolyacid promoted lignin-MOF derived spherical catalyst for catalytic hydrogen transfer of 5-hydroxymethylfurfural.

J Colloid Interface Sci

Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China. Electronic address:

Published: September 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Catalytic conversion of biomass-derived value-added chemicals was of great significance for the utilization of renewable biomass resources to instead of fossil chemicals. Biomass-derived lignin was regarded as an important support and 5-hydroxymethylfurfural (HMF) was a vital platform chemical derived from cellulose. Herein, a series of lignin-MOF hybrid catalysts were prepared and modified with different heteropolyacids (HPAs), which were then successfully introduced into the selective conversion of HMF to 5-hydroxymethylfurfuryl alcohol (MFA). The effect of different HPA, calcination temperature, etc. were all studied, and all catalysts were well characterized. It was confirmed that silicotungstic acid modified catalyst (NiCo-MOF-LS@HSiW) exhibited the best catalytic performance, while the highest conversion of HMF was up to 100%, with the best MFA yield of 86.5%. The finding in this study could provide novel insights for the utilization of lignin and preparation of value-added biomass-derived chemicals.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2024.05.006DOI Listing

Publication Analysis

Top Keywords

conversion hmf
8
heteropolyacid promoted
4
promoted lignin-mof
4
lignin-mof derived
4
derived spherical
4
spherical catalyst
4
catalyst catalytic
4
catalytic hydrogen
4
hydrogen transfer
4
transfer 5-hydroxymethylfurfural
4

Similar Publications

Marine chitin valorization by ionic liquids and deep eutectic solvents: Dissolution, green extraction and conversion.

Bioresour Technol

September 2025

Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China; Technology Innovation Center for High-Efficiency Utilization of Bamboo-Based Biomass in Guizhou Province, Guiyang 550025, China. Electronic address:

Worldwide, marine shell waste generated from the seafood industry has emerged as a significant environmental challenge. Indeed, this shell waste represents an abundant source of various valuable products, particularly chitin. However, the extraction and subsequent processing of chitin are hindered by the inherently resistant structure of these chitin-rich feedstocks, coupled with strong hydrogen bonding between chitin chains.

View Article and Find Full Text PDF

Proton Flux Engineering via Built-in Electric Fields in N-doped CuO@CoO@Ni(OH) Heterostructure for Rechargeable Zn-NO /5-Hydroxymethylfurfural Multielectron Transfer Systems.

Angew Chem Int Ed Engl

September 2025

International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Lihu Street 1800, Wuxi, 214122, P.R. China.

Electrocatalytic coupling of nitrate reduction (NORR) to ammonia with 5-hydroxymethylfurfural (HMF) oxidation to 2,5-furandicarboxylic acid (FDCA) enables simultaneous wastewater remediation and biomass valorization. However, developing efficient bifunctional electrocatalysts for these multiproton-coupled electron transfer reactions remains challenging as conventional single-active-site catalysts inherently suffer from linear scaling relationships between intermediates and adsorption energies, particularly sluggish proton transfer. To address this, we engineered a triphasic N-doped CuO@CoO@Ni(OH) heterostructure with a gradient built-in electric field (BIEF), which synergistically enhances interfacial charge polarization and accelerates proton transport through dynamic coupling effects in both reactions: sufficient *H supply for NORR and fast Ni(OH)/NiOOH redox cycling during HMF oxidation (HMFOR), thus achieving unprecedented bifunctional performance: at - 0.

View Article and Find Full Text PDF

High-Value Conversion of Biomass-Derived Chemicals by In Situ Construction of Ni(OH)/CeVO@NF Catalysts Enriched with Oxygen Vacancies.

Small

September 2025

The Liaoning Province Key Laboratory of Paper and Pulp Engineering, The Key Laboratory of High Value Utilization of Botanical Resources of China, Light Industry College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, China.

2,5-Furandicarboxylic acid (FDCA), synthesized via selective oxidation of 5-hydroxymethylfurfural (HMF), is a structural analog to petroleum-derived terephthalic acid (PTA) and a key precursor for renewable polyesters like polyethylene furanoate (PEF). Recent advances in electrocatalytic HMF oxidation (HMFOR) enable efficient synthesis under mild conditions, aligning with renewable energy integration. In this work, catalysts with oxygen-rich vacancies by growing Ce, V bimetallic-dopsynthesizeded Ni(OH) nanosheets in situ on nickel foam for electrocatalytic HMF oxidation to FDCA are prepared.

View Article and Find Full Text PDF

Hydrogen Bridge-Mediated Efficient Electrooxidation of 5-Hydroxymethylfurfural on Ni(OH)─PO /Ni(PO) Heterojunctions.

Angew Chem Int Ed Engl

August 2025

Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China.

Accelerating proton deintercalation and transfer on the catalyst surface is crucial for the electrochemical oxidation of 5-hydroxymethylfurfural (HMF) into the high-value 2,5-furanodicarboxylic acid (FDCA). Herein, we have constructed a Ni(OH)─PO /Ni(PO) heterojunction catalyst that demonstrates exceptional selectivity (97.16%), yield (94.

View Article and Find Full Text PDF

We report a stable and selective photocatalyst for solar-driven oxidation of 5-hydroxymethylfurfural (HMF) using TiO coated CsPbBr quantum dots (QDs). Controlled TiO encapsulation at 120 °C preserves the structural integrity of the QDs, enhances colloidal stability, and forms a type II heterojunction that facilitates charge separation. The optimized nanocomposite achieves high conversion to 2,5-diformylfuran (DFF) with 90% selectivity under visible light irradiation using TEMPO as a redox mediator.

View Article and Find Full Text PDF