98%
921
2 minutes
20
Objective: Blockade of activin 2 receptor (ACVR2) signaling has been shown to improve insulin sensitivity and aid in weight loss. Inhibition of ACVR2 signaling restores cardiac function in multiple heart failure models. However, its potential in the treatment of obesity-related cardiometabolic disease remains unknown. Here, we investigated targeting ACVR2 signaling in cardiometabolic disease manifested with metabolic dysfunction-associated steatotic liver disease (MASLD).
Methods: Mice were fed a high-fat, high-sugar diet combined with the administration of nitric oxide synthase inhibitor L-NAME in drinking water, which causes hypertensive stress. For the last eight weeks, the mice were treated with the soluble ACVR2B decoy receptor (sACVR2B-Fc).
Results: sACVR2B-Fc protected against the development of comorbidities associated with cardiometabolic disease. This was most pronounced in the liver where ACVR2 blockade attenuated the development of MASLD including cessation of pro-fibrotic activation. It also significantly reduced total plasma cholesterol levels, impeded brown adipose tissue whitening, and improved cardiac diastolic function. In vitro, ACVR2 ligands activin A, activin B and GDF11 induced profibrotic signaling and the proliferation of human cardiac fibroblasts.
Conclusions: Blockade of ACVR2B exerts broad beneficial effects for therapy of cardiometabolic disease. By reducing obesity, ameliorating cardiovascular deterioration and restraining MASLD, blockade of ACVR2B signaling proves a potential target in MASLD and its comorbidities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biopha.2024.116683 | DOI Listing |
High Blood Press Cardiovasc Prev
September 2025
Center for Translational and Experimental Cardiology, Department of Cardiology, University Hospital Zurich and University of Zürich, Wagistrasse 12, 8952, Schlieren, Switzerland.
Introduction: Epigenetic changes are important modulators of gene expression. The histone acetyltransferase gene non-derepressible 5 (Gcn5) is emerging as a pivotal epigenetic player in metabolism and cancer, yet its role in obesity and cardiovascular disease remains elusive.
Aims: To investigate Gcn5 role in obesity-related endothelial dysfunction.
Abdom Radiol (NY)
September 2025
Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, UK.
Objectives: The escalating global incidence of obesity, cardiometabolic disease and sarcopenia necessitates reliable body composition measurement tools. MRI-based assessment is the gold standard, with utility in both clinical and drug trial settings. This study aims to validate a new automated volumetric MRI method by comparing with manual ground truth, prior volumetric measurements, and against a new method for semi-automated single-slice area measurements.
View Article and Find Full Text PDFEur J Heart Fail
September 2025
Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, TX, USA.
Aims: Obesity is commonly hypothesized to lead to the development of heart failure (HF) in part due to increases in blood volume (BV) and left ventricular (LV) remodelling. Whether adiposity and obesity severity are associated with BV expansion and subsequent LV remodelling in middle-aged individuals at increased risk (IR) prior to the onset of HF is unknown.
Methods And Results: We analysed data from 96 middle-aged (40-64 years) non-obese (25.
Diabetes Obes Metab
September 2025
Epidemiology, IQVIA, Frankfurt, Germany.
Aims: To examine the association between elevated body mass index (BMI) and a wide range of vascular and cardiometabolic diseases in men and women.
Materials And Methods: This retrospective cohort study used data from the IQVIA Disease Analyzer database, comprising anonymized records from over 3000 office-based physicians in Germany. We included 233 730 patients aged ≥40 years with at least one recorded BMI measurement between January 2005 and December 2023.
Int J Cardiol Heart Vasc
October 2025
Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany.