Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Chemical oxidation processes are widely used for the remediation of organically contaminated soils, but their potential impact on variable-valence and toxic metals such as chromium (Cr) is often overlooked. In this study, we investigated the risk of Cr(Ⅲ) oxidation in soils during the remediation of 2-chlorophenol (2-CP) contaminated soils using four different processes: Potassium permanganate (KMnO), Modified Fenton (Fe/HO), Alkali-activated persulfate (SO/OH), and Fe-activated persulfate (SO/Fe). Our results indicated that the KMnO, Fe/HO, and SO/Fe processes progressively oxidized Cr(III) to Cr(Ⅵ) during the 2-CP degradation. The KMnO process likely involved direct electron transfer, while the Fe/HO and SO/Fe processes primarily relied on HO• and/or SO• for the Cr(III) oxidation. Notably, after 4 h of 2-CP degradation, the Cr(VI) content in the KMnO process surpassed China's 3.0 mg kg risk screening threshold for Class I construction sites, and further exceeded the 5.7 mg kg limit for Class II construction sites after 8 h. Conversely, the SO/OH process exhibited negligible oxidation of Cr(III), maintaining a low oxidation ratio of 0.13%, as highly alkaline conditions induced Cr(III) precipitation, reducing its exposure to free radicals. Cr(III) oxidation ratio was directly proportional to oxidant dosage, whereas the Fe/HO process showed a different trend, influenced by the concentration of reductants. This study provides insights into the selection and optimization of chemical oxidation processes for soil remediation, emphasizing the imperative for thorough risk evaluation of Cr(III) oxidation before their application.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2024.120973DOI Listing

Publication Analysis

Top Keywords

chemical oxidation
12
oxidation processes
12
contaminated soils
12
criii oxidation
12
oxidation
10
processes remediation
8
remediation 2-chlorophenol
8
fe/ho so/fe
8
so/fe processes
8
2-cp degradation
8

Similar Publications

Rapid Removal of Azo Cationic Dyes Using a Cu(II) Hydrogen-Π-Bonded Organic Framework and Its Derived Oxide: A Combined Adsorption and Photocatalysis Study.

Langmuir

September 2025

Laboratory of Electrochemistry-Corrosion, Metallurgy and Inorganic Chemistry, Faculty of Chemistry, USTHB, BP 32, 16111, Algiers, Algeria.

Azo dyes, prevalent in various industries, including textile dyeing, food, and cosmetics, pose significant environmental and health risks due to their chemical stability and toxicity. This study introduces the synthesis and application of a copper hydrogen-π-bonded benzoate framework (Cu-HBF) and its derived marigold flower-like copper oxide (MFL-CuO) in a synergetic adsorption-photocatalytic process for efficiently removing cationic azo dyes from water, specifically crystal violet (CV), methylene blue (MB), and rhodamine B (RhB). The Cu-HBF, previously available only in single crystal form, is prepared here as a crystalline powder for the first time, using a low-cost and facile procedure, allowing its application as an adsorbent and also serving as a precursor for synthesizing well-structured copper oxide (MFL-CuO).

View Article and Find Full Text PDF

Polar protic and aprotic solvents can effectively simulate the maturation of breast carcinoma cells. Herein, the influence of polar protic solvents (water and ethanol) and aprotic solvents (acetone and DMSO) on the properties of 3-(dimethylaminomethyl)-5-nitroindole (DAMNI) was investigated using density functional theory (DFT) computations. Thermodynamic parameters retrieved from the vibrational analysis indicated that the DAMNI's entropy, heat capacity, and enthalpy increased with rising temperature.

View Article and Find Full Text PDF

Two-dimensional 1T-phase MnIrO for high-performance acidic oxygen evolution reaction.

Nanoscale

September 2025

College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, China.

Proton exchange membrane water electrolysis (PEMWE) is regarded as the most promising technique for the sustainable production of green hydrogen due to its multiple advantages such as high working current density and high hydrogen purity. However, the anodic oxygen evolution reaction (OER) has a significant impact on the overall efficiency of the electrolytic water reaction due to its sluggish kinetics, which has prompted the search for catalysts possessing both high activity and durability. Iridium oxide exhibits excellent stability under acidic conditions but has poor catalytic activity, leading to its inability to meet the strict requirements of large-scale industrial applications.

View Article and Find Full Text PDF

Spatially and temporally controlled drug delivery is an important field to address the limitations of conventional pharmaceutical administration. While many effective controlled drug delivery systems exist, the repertoire of systems that additionally present a beneficial mechanical environment to cells remains scarce. To address this, a comprehensive release study of fluorescein as a model drug, and the corticosteroid dexamethasone, from poly(-isopropylacrylamide)/polypyrrole (pNIPAM/PPy) conducting polymer hydrogels is presented within this study.

View Article and Find Full Text PDF

Parkinson's disease (PD) is characterized by impairments in motor control following the degeneration of dopamine-producing neurons located in the substantia nigra pars compacta. Environmental pesticides such as Paraquat (PQ) and Maneb (MB) contribute to the onset of PD by inducing oxidative stress (OS). This study evaluated the therapeutic efficacy of moderate physical activity (PA) on both motor and non-motor symptoms in a Wistar rat model of Paraquat and Maneb (PQ/MB) induced PD.

View Article and Find Full Text PDF