Human biomonitoring follow-up study on PFOA contamination and investigation of possible influencing factors on PFOA exposure in a German population originally exposed to emissions from a fluoropolymer production plant.

Int J Hyg Environ Health

Bavarian Health and Food Safety Authority, Institute for Occupational Health and Product Safety, Environmental Health, Munich, Germany; Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Ziemssenstr. 5, 80336, Munich, Germany.

Published: June 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: In the past, perfluorooctanoic acid (PFOA) was produced and applied as an emulsifier in a fluoropolymer production plant in the Altötting district, southern Bavaria (Germany). This chemical was released directly into the environment, resulting in the contamination of the local drinking water. During a human biomonitoring (HBM) survey in 2018, increased median PFOA blood serum levels, compared to a normally exposed control group with no known source of PFOA exposure from Munich, Germany, were detected in the resident population (23.18 μg/l in the general population, 20.71 μg/l in the children's group). The follow-up study aimed to investigate whether purification of the drinking water as the main PFOA exposure source has been successful in reducing internal PFOA exposure and to estimate the association of internal PFOA exposure with possible influencing factors.

Methods: Only individuals who had already participated in the HBM study in 2018 were included. For the determination of the PFOA serum concentration, 5 ml of blood was drawn from each participating person. Blood samples were collected in the period from June to August 2022. Furthermore, information on sociodemographic characteristics, health status, dietary behaviour and other lifestyle factors were collected by means of a self-administered questionnaire. To examine the association of PFOA blood serum levels with possible influencing factors, such as age, gender and consumption of fish and game meat, a logistic regression model with a PFOA value > 10 μg/l as outcome was used.

Results: A total of 764 individuals participated in the follow-up study in 2022. Analyses were performed separately for the general population (n = 559), women of reproductive age (15-49 years old) (n = 120), and children under 12 years old (n = 30). Median PFOA blood levels have decreased by 56.9% in the general population, by 59.8% in the group of women of reproductive age and by 73.4% in the group of children under 12 years old. In the general population, a higher probability of a PFOA value > 10 μg/l was found for those aged 40-59 years (Odds ratio (OR) = 2.33 (95%CI: 1.23 to 4.43, p = 0.01) and those aged 60 years and older (OR = 5.32, 95%CI: 2.78 to 10.19, p < 0.001).

Conclusions: In all study groups, the median PFOA serum levels decreased as expected after a half-life of four years, which confirms that contamination via drinking water has ceased. Furthermore, our study identified age as a significant predictor of internal PFOA exposure, while no influence was found for the consumption of fish and game meat. Further investigations are needed to quantify in a more detailed way the influence of dietary habits on PFOA exposure.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijheh.2024.114387DOI Listing

Publication Analysis

Top Keywords

pfoa exposure
20
general population
16
pfoa
13
follow-up study
12
pfoa blood
12
human biomonitoring
8
influencing factors
8
fluoropolymer production
8
production plant
8
drinking water
8

Similar Publications

PFAS in plant-biosolids-soil systems: Distribution, fractionation, and effects on soil microbial communities.

J Hazard Mater

September 2025

Department of Environmental & Sustainable Engineering, University at Albany, State University of New York, Albany, NY 12222, United States. Electronic address:

This study examined the behavior of six U.S. Environmental Protection Agency (EPA) regulated per- and polyfluoroalkyl substances (PFAS) compounds in vegetated soils amended with Class A and Class B biosolids.

View Article and Find Full Text PDF

Assessing the impact of perfluoroalkyl substances on liver health: a comprehensive study using multi-donor human liver spheroids.

Environ Int

September 2025

Division of Gastrointestinal and Liver Diseases, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States. Electronic address:

Background: Although per- and polyfluoroalkyl substances (PFAS) have been linked to chronic liver diseases, the specific cellular and molecular mechanisms by which different PFAS contribute to human liver dysfunction remain unclear. This study aims to elucidate those mechanisms.

Methods: We exposed a multi-donor human liver spheroid model composed of multiple cell types to 20 µM of PFHxS, PFOA, PFOS, or PFNA for seven days, followed by single-cell RNA sequencing and lipid staining.

View Article and Find Full Text PDF

Prenatal exposure to per- and polyfluoroalkyl substances: Association with child behavior in the environmental influences on child health outcomes (ECHO) Cohort.

Environ Int

August 2025

Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina, Chapel Hill, NC, USA; Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina, Chapel Hill, NC, USA. Electr

Background: Prenatal exposure to per- and polyfluoroalkyl substances (PFAS) may adversely impact child neurodevelopment; however, epidemiologic findings remain inconclusive because of small sample sizes, limited exposure variability, and differing neurodevelopmental measures. We aimed to investigate the relationship between prenatal PFAS exposure and child behavior.

Methods: We pooled data from nine study sites in the nationwide Environmental influences on Child Health Outcomes (ECHO) Cohort.

View Article and Find Full Text PDF

Per- and polyfluoroalkyl substances (PFAS) are persistent environmental pollutants increasingly implicated in cardiometabolic risk. This study evaluates the association between serum PFAS exposure and lipid dysregulation, focusing on low-density lipoprotein cholesterol (LDL-C), a key cardiovascular risk factor. We analyzed 998 adults from the 2017 to 2020 National Health and Nutrition Examination Survey (NHANES), representing a weighted sample of 240 million US adults.

View Article and Find Full Text PDF

Occurrence, spatial distribution, and risk assessment of per- and polyfluoroalkyl substances in soil and groundwater of a petrochemical industrial park in China.

Environ Pollut

September 2025

State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Zhejiang Key Laboratory of Environment and Health of New Pollutants, School of Environment, Hangzhou Institute for Advanced Study, U

Per- and polyfluoroalkyl substances (PFAS) are extensively used in the petrochemical industry and pose considerable risks to the environment. However, systematic research on PFAS contamination in petrochemical industrial parks remains limited. This study focused on the occurrence, spatial distribution, and sources of 20 typical PFAS in soil (n = 19) and groundwater (n = 13) samples from a petrochemical industrial park in China.

View Article and Find Full Text PDF