A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Heterointerface Effects on Carrier Dynamics in Colloidal Quantum Dots and Their Application to Light-Emitting Diodes. | LitMetric

Heterointerface Effects on Carrier Dynamics in Colloidal Quantum Dots and Their Application to Light-Emitting Diodes.

ACS Appl Mater Interfaces

Department of Physics, Research Institute Physics and Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea.

Published: May 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Colloidal quantum dots (QDs) are promising candidates for next-generation display technology because of their unique optical properties and have already appeared in the market as a high-end product. On the basis of their extraordinary properties, QD emissions with a given chemical composition can be tailored in a wide spectral window due to quantum size effects, which constitutes a key advantage of QDs in the display field. Specifically, investigations of structure-dependent and composition-dependent characterizations outside the quantum confinement effect have become an important part of practical applications. Therefore, from the perspective of designing nanostructures with well-defined heterointerfaces, strong quantum confinement effects with effective carrier confinement are desirable. Our results show that the photoluminescence (PL) intensity of CdSe/CdZnS core-shell QDs was enhanced 5.7 times compared with that of the CdSe core QDs. Supplementary analytical techniques involving transmission electron microscopy revealed the heterointerface configuration and composition distribution of the core and shell materials. The effects of the heterointerface on carrier dynamics in core-shell QDs were revealed by monitoring wavelength-dependent time-resolved PL. To further develop the QD light-emitting diodes (QD-LEDs), we produced an all-solution processed inverted QD-LEDs using CdSe/CdZnS core-shell QDs as the emitter. The electroluminescence spectrum of deep-red emissive QD-LEDs with CIE chromaticity coordinates of (0.68, 0.32) exhibited a peak at 638 nm.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.4c01325DOI Listing

Publication Analysis

Top Keywords

core-shell qds
12
carrier dynamics
8
colloidal quantum
8
quantum dots
8
light-emitting diodes
8
quantum confinement
8
cdse/cdzns core-shell
8
qds
6
quantum
5
heterointerface effects
4

Similar Publications