98%
921
2 minutes
20
Due to antimicrobial resistance that occurs throughout the world, antibiotic-releasing hydrogel with at least two drugs that synergistically treat stubborn bacteria is preferable for infection prevention. Hydrogel can serve as a drug reservoir to gradually release drugs in a therapeutic window to effectively treat microorganisms with minimal side effects. The study and development of drug releasing hydrogels requires a reliable, straightforward, cost-effective, fast, and low labor-intensive drug detection technique. In this study, we validate the electrochemical technique and device setup for real-time determination of dual antibacterial drugs released from a hydrogel. Concentrations of two representative antibacterial drugs, tetracycline (TC) and chloramphenicol (CAP), were determined using square wave voltammetry (SWV) mode that yields the lower limit of detection at 2.5 µM for both drugs. Measurement accuracy and repeatability were verified by 36 known drug combination concentrations. Capability in long-term measurement was confirmed by the measurement stability which was found to last for at least 72 h. Stirring was revealed as one of the significant factors for accurate real-time detection. Real-time measurement was ultimately performed to demonstrate the determination of multiple drug releases from a drug releasing hydrogel and validated by high-performance liquid chromatography (HPLC). All the results support that the electrochemical technique with the proposed device design and setup can be used to accurately and simultaneously determine dual drugs that are released from a hydrogel in real-time.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jpba.2024.116165 | DOI Listing |
Dalton Trans
September 2025
Laboratory for New Ceramics, Department of Ceramic Engineering, National Institute of Technology Rourkela, Rourkela, Odisha 769008, India.
Polymer-derived ceramics are a versatile class of multifunctional materials synthesized the high-temperature treatment of a preceramic polymer. In this work, we report the synthesis of a vanadium carbide-embedded carbonaceous hybrid by pyrolyzing a modified preceramic polymer incorporating vanadium acetylacetonate in a polysilsesquioxane followed by hydrofluoric acid etching. The structural and microscopic characterisation confirmed the uniform distribution of nanoparticulate vanadium carbide in the matrix.
View Article and Find Full Text PDFMed Phys
September 2025
Department of Accelerator and Medical Physics, National Institutes for Quantum Science and Technology (QST), Chiba, Japan.
Background: Multi-ion radiotherapy using carbon, oxygen, and neon ions aims to improve local control by increasing dose-averaged linear energy transfer (LET) in the target. However, there has been limited understanding of how to utilize variables for multi-ion treatment planning such as the selection and arrangement of ion species.
Purpose: An in silico study was conducted to explore the feasibility of increasing a minimum LET, and the optimal selection and arrangement of ion species in multi-ion therapy for increasing LET in tumors of varying sizes mimicking bone and soft tissue sarcomas (BSTS).
Bioelectromagnetics
September 2025
Competence Centre of Sleep Medicine, Charité -Universitaetsmedizin Berlin, Berlin, Germany.
A new whole-body exposure facility for a randomized, double-blind, cross-over provocation study investigating possible effects of 50 Hz magnetic field exposure on sleep and markers of Alzheimer's disease has been developed and dosimetrically analyzed. The exposure facility was custom-tailored for the sleep laboratory where the study was carried out and enables magnetic flux densities of up to 30 μT with a maximum field inhomogeneity of less than ± 20%. Exposure is applied fully software-controlled and in a blinded and randomized manner.
View Article and Find Full Text PDFNano Lett
September 2025
Department of Physics, The University of Tokyo, Hongo, Tokyo 113-0033, Japan.
On-chip terahertz (THz) spectroscopy has attracted growing attention because of its capability of measuring samples far smaller than the Rayleigh diffraction limit. The technique also allows the investigation of nonlinear responses of materials, which is indispensable for the development of ultrafast devices operating with a THz bandwidth. Here, we report the development of an on-chip THz-pump THz-probe spectroscopy technique that enables the study of ultrafast electrical-pulse-induced nonequilibrium phenomena.
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
September 2025
Department of Biomechanical Engineering, Faculty of Engineering Technology, University of Twente, Enschede, 7522 NB, the Kingdom of the Netherlands. Electronic address:
In orthopaedic surgical procedures, bone cutting is often performed with an oscillating saw. Achieving an optimal cut requires high accuracy, low temperature, minimal surgeon effort, and time efficiency, all of which may be influenced by the forces applied on the sawing device, and the microstructure of the cut bone. The relation between bovine bone microstructure and sawing forces has been studied.
View Article and Find Full Text PDF