98%
921
2 minutes
20
Currently, natural and urban ecosystems are affected by different types of atmospheric deposition, which can compromise the balance of the environment. Plastic pollution represents one of the major threats for biota, including lichens. Epiphytic lichens have value as bioindicators of environmental pollution, climate change, and anthropic impacts. In this study, we aim to investigate the lichen bioaccumulation of airborne microplastics along an anthropogenic pollution gradient. We sampled lichens from the Genera Cladonia and Xanthoria to highlight the effectiveness of lichens as tools for passive biomonitoring of microplastics. We chose three sites, a "natural site" in Altipiani di Arcinazzo, a "protected site" in Castelporziano Presidential estate and an "urban site" in the centre of Rome. Overall, we sampled 90 lichens, observed for external plastic entrapment, melt in oxygen peroxide and analysed for plastic entrapment. To validate the method, we calculated recovery rates of microplastics in lichen. Particularly, 253 MPs particles were detected across the 90 lichen samples: 97 % were fibers, and 3 % were fragments. A gradient in the number of microplastic fibers across the sites emerged, with increasing accumulation of microplastics from the natural site (n = 58) to the urban site (n = 116), with a direct relationship between the length and abundance of airborne microplastic fibers. Moreover, we detected the first evidences of airborne mesoplastics entrapped by lichens. On average, the natural site experienced the shortest fibre length and the centre of Rome the longest. No differences in microplastics accumulation emerged from the two genera. Our results indicated that lichens can effectively be used for passive biomonitoring of microplastic deposition. In this scenario, the role of lichens in entrapping microplastics and protecting pristine areas must be investigated. Furthermore, considering the impact that airborne microplastics can have on human health and the effectiveness of lichens as airborne microplastic bioindicators, their use is encouraged.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envint.2024.108707 | DOI Listing |
Sci Total Environ
September 2025
Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA; Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16801, USA. Electronic address:
Wastewater surveillance is increasingly an effective public health tool for responding to epidemics and preparing for annual cycles of respiratory illnesses. We measured genetic markers from Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), influenza A virus (IAV) and influenza B virus (IBV) in untreated wastewater of a university campus and its local residential community over a four-year period using digital Polymerase Chain Reaction (PCR) methods. These data were then analyzed and compared to clinical case data reported to the state by zip code.
View Article and Find Full Text PDFMol Ecol Resour
September 2025
CBGP, INRAE, CIRAD, IRD, Institut Agro, Univ Montpellier, Montpellier, France.
As human activities drive biodiversity decline, effective biomonitoring is more crucial than ever to track species distribution changes and inform conservation and restoration actions. Environmental DNA (eDNA) metabarcoding has emerged as a promising tool for the simultaneous detection of multiple taxa. However, while substrates play a crucial role in eDNA studies, limited research has compared substrate performance for terrestrial vertebrate detection, leaving a critical gap in empirical knowledge for large-scale application.
View Article and Find Full Text PDFIEEE Trans Biomed Eng
September 2025
The multi-channel synchronous stimulator, aimed at achieving efficient and precise neural regulation, typically utilizes a monolithic microelectrode array structure. However, this structure limits the flexibility of electrode placement and the expansion to a large number of nodes, particularly in discontinuous locations. To address this, this paper designs a distributed passive micro-magnetic stimulation (DP-μMS) neuro-regulation device with multi-brain region collaborative stimulation functionality.
View Article and Find Full Text PDFPeerJ
September 2025
School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, HI, United States of America.
Efficient detection and management of non-indigenous species are critical for mitigating their ecological impacts. Environmental DNA (eDNA) techniques have transformed biodiversity monitoring by enabling sensitive and cost-effective surveys. This study compares the efficacy of passive eDNA samplers (PEDS) to conventional active filtration methods for detecting the cryptogenic macroalga within the Papahānaumokuākea Marine National Monument, Hawai'i, USA.
View Article and Find Full Text PDFOne Health
December 2025
SimplexDNA AG, Winterthur 8404, Switzerland.
Zoonotic malaria risk at human-wildlife-environment interfaces requires surveillance that integrates signals from reservoirs, vectors and the environment. We coupled a drone-based environmental DNA (eDNA) canopy swabbing approach with portable quantitative PCR (qPCR) to detect DNA in situ during a 24-h field exercise in the Amazon rainforest. Drone-lowered sterile swabs into the canopy, which were then extracted and subjected to a multiplex pan- assay targeting five human-infecting species (limit of detection 0.
View Article and Find Full Text PDF