Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: It is well known that high-fat diet (HFD)-induced metabolic syndrome plays a crucial role in cognitive decline and brain-blood barrier (BBB) breakdown. However, whether the bone-brain axis participates in this pathological process remains unknown. Here, we report that platelet-derived growth factor-BB (PDGF-BB) secretion by preosteoclasts in the bone accelerates neuroinflammation. The expression of alkaline phosphatase (ALPL), a nonspecific transcytosis marker, was upregulated during HFD challenge.

Main Body: Preosteoclast-specific Pdgfb transgenic mice with high PDGF-BB concentrations in the circulation recapitulated the HFD-induced neuroinflammation and transcytosis shift. Preosteoclast-specific Pdgfb knockout mice were partially rescued from hippocampal neuroinflammation and transcytosis shifts in HFD-challenged mice. HFD-induced PDGF-BB elevation aggravated microglia-associated neuroinflammation and interleukin-1β (IL-1β) secretion, which increased ALPL expression and transcytosis shift through enhancing protein 1 (SP1) translocation in endothelial cells.

Conclusion: Our findings confirm the role of bone-secreted PDGF-BB in neuroinflammation and the transcytosis shift in the hippocampal region during HFD challenge and identify a novel mechanism of microglia-endothelial crosstalk in HFD-induced metabolic syndrome.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11057146PMC
http://dx.doi.org/10.1186/s12974-024-03097-5DOI Listing

Publication Analysis

Top Keywords

hfd-induced metabolic
12
metabolic syndrome
12
neuroinflammation transcytosis
12
transcytosis shift
12
microglia-endothelial crosstalk
8
crosstalk hfd-induced
8
preosteoclast-specific pdgfb
8
transcytosis
6
hfd-induced
5
neuroinflammation
5

Similar Publications

Sodium Orthovanadate (SOV) mitigates alcohol & alcohol plus high-fat diet (HFD)-induced hepatotoxicity in rats.

Cell Mol Biol (Noisy-le-grand)

September 2025

Associate Professor, School of Pharmacy, Desh Bhagat University, Mandi Gobindgarh-Punjab 147301, India.

Alcoholic fatty liver disease (AFLD) is a leading cause of chronic liver disease worldwide, contributing to significant morbidity and mortality. Despite its growing prevalence, no FDA-approved pharmacological treatments exist, leaving lifestyle modifications as the primary intervention. AFLD pathogenesis involves a complex interplay of lipid accumulation, oxidative stress, insulin resistance, and inflammation, highlighting the need for innovative therapeutic approaches.

View Article and Find Full Text PDF

Effects of metformin on gut microbiota and short/mediumchain fatty acids in highfat diet rats.

Zhong Nan Da Xue Xue Bao Yi Xue Ban

May 2025

Department of Laboratory Animal Science, Xiangya School of Medicine, Central South University, Changsha 410013, China.

Objectives: Recent evidence suggests that the gut may be a primary site of metformin action. However, studies on the effects of metformin on gut microbiota remain limited, and its impact on gut microbial metabolites such as short-/medium-chain fatty acids is unclear. This study aims to investigate the effects of metformin on gut microbiota, short-/medium-chain fatty acids, and associated metabolic benefits in high-fat diet rats.

View Article and Find Full Text PDF

Objectives: To investigate the therapeutic effect of electroacupuncture (EA) at Zusanli (ST36) acupoint on hyperlipidemia in mice and explore the underlying mechanisms.

Methods: Thirty C57BL/6J mice were equally randomized into normal diet group, high-fat diet (HFD) group, and EA group. The changes in blood lipids and serum malondialdehyde (MDA) content of the mice were evaluated, and histopathological changes and lipid accumulation in the liver were observed using Oil red O staining (ORO).

View Article and Find Full Text PDF

Subcutaneous administration of the sphingosine kinase 2 inhibitor ABC294640 has no metabolic benefits in high fat diet-induced obesity in male mice.

Life Sci

September 2025

Department of Experimental Medical Science, Faculty of Medicine, Lund University, 221 84, Lund, Sweden; Wallenberg Center for Molecular Medicine, Faculty of Medicine, Lund University, 221 84, Lund, Sweden. Electronic address:

Aims: Experimental evidence suggests an important role for sphingosine-1-phosphate (S1P) and its generating enzymes sphingosine kinase 1/2 (SphK1/2) in obesity. We and others have shown that plasma S1P levels are elevated in obese mice and humans. Preclinical studies suggest that genetic SphK2 ablation in mice protects from age- and diet-induced obesity and metabolic dysfunction.

View Article and Find Full Text PDF

High fat diet (HFD)-induced obesity increases the risk and severity of psoriasis. However, the immunoregulatory effects of different HFDs on psoriasis pathogenesis remains poorly understood. Here, mimicking human dietary fat profiles, four HFDs-saturated, monounsaturated, omega-6, and omega-3 fats-were designed and used to induce obesity in mice.

View Article and Find Full Text PDF