Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Leveraging poly(vinylidene fluoride-trifluoroethylene) [(PVDF-TrFE)] as the dielectric, we fabricated organic ferroelectric field-effect transistors (OFe-FETs). These devices demonstrate quasi-static transfer characteristics that include a hysteresis window alongside transient phenomena that bear resemblance to synaptic plasticity-encapsulating excitatory postsynaptic current (EPSC) as well as both short-term and long-term potentiation (STP/LTP). We also explore and elucidate other aspects such as the subthreshold swing and the hysteresis window under dynamic state by varying the pace of voltage sweeps. In addition, we developed an analytical model that describes the electrical properties of OFe-FETs, which melds an empirical formula for ferroelectric polarization with a compact model. This model agrees well with the experimental data concerning quasi-static transfer characteristics, potentially serving as a quantitative tool to improve the understanding and design of OFe-FETs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11051882 | PMC |
http://dx.doi.org/10.3390/mi15040467 | DOI Listing |