Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The transforaminal lumbar interbody fusion (TLIF) has seen significant evolution since its early inception, reflecting advancements in surgical techniques, patient safety, and outcomes. Originally described as an improvement over the posterior lumbar interbody fusion (PLIF), the TLIF began as an open surgical procedure, that notably reduced the need for the extensive neural retractation that hindered the PLIF. In line with the broader practice of surgery, trending toward minimally invasive access, the TLIF was followed by the development of the minimally invasive TLIF (MIS-TLIF), a technique that further decreased tissue trauma and postoperative complications. Subsequent advancements, including Trans-Kambin's Triangle TLIF (percLIF) and transfacet LIF, have continued to refine surgical access, minimize surgical footprint, and reduce the risk of injury to the patient. The latest evolution, as we will describe it, the patient-specific TLIF, is a culmination of the aforementioned adaptations and incorporates advanced imaging and segmentation technologies into perioperative planning, allowing surgeons to tailor approaches based on individual patient anatomy and pathology. These developments signify a shift towards more precise methods in spine surgery. The ongoing evolution of the TLIF technique illustrates the dynamic nature of surgery and emphasizes the need for continued adaptation and refinement.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11051479PMC
http://dx.doi.org/10.3390/jcm13082271DOI Listing

Publication Analysis

Top Keywords

lumbar interbody
12
interbody fusion
12
transforaminal lumbar
8
tlif
8
fusion tlif
8
minimally invasive
8
evolution
4
evolution transforaminal
4
tlif open
4
open percutaneous
4

Similar Publications

For lumbar spinal canal stenosis, endoscopic spine surgery typically employs a unilateral approach. While this approach has the advantage of early access to the lamina, it risks damage to the facet joint on the entry side. Additionally, decompression of the ipsilateral lateral recess can be challenging, sometimes resulting in inadequate decompression laterally, leading to incomplete symptom relief.

View Article and Find Full Text PDF

Background: Single-position prone transpsoas lateral lumbar interbody fusion (PTP-LLIF) is an evolving minimally invasive surgery technique that merges the biomechanical and anatomical advantages of prone positioning with the LLIF approach. While PTP-LLIF enhances lumbar lordosis restoration and operative efficiency by eliminating patient repositioning, it presents unique ergonomic and visualization challenges for surgeons. This technical report describes a novel modification of the technique using the Teligen camera to improve intraoperative visualization and reduce surgeon fatigue.

View Article and Find Full Text PDF

Background: Symptomatic lumbar degenerative changes impact millions of patients per year. Recent technological advances have increased the usability of robot-assisted spinal fusions to treat this pathology. Although the safety profile of robotic systems appears favorable, the impact of robotics on surgical outcomes and efficiency remains unclear.

View Article and Find Full Text PDF

ObjectiveTo determine the effectiveness of bilateral decompression combined with a unilateral transforaminal lumbar interbody fusion approach in centralizing a lordotic cage and preventing contralateral radiculopathy by ensuring equal foraminal elevation.MethodsThis is a retrospective cohort study based on clinical records and radiological data. Eighty-seven patients diagnosed with lumbar spinal stenosis at L3-S1 levels underwent bilateral decompression and transforaminal lumbar interbody fusion between 2017 and 2022.

View Article and Find Full Text PDF