98%
921
2 minutes
20
Thin-film composite reverse osmosis membranes have remained the gold standard technology for desalination and water purification for nearly half a century. Polyamide films offer excellent water permeability and salt rejection but also suffer from poor chlorine resistance, high fouling propensity, and low boron rejection. We addressed these issues by molecularly designing a polyester thin-film composite reverse osmosis membrane using co-solvent-assisted interfacial polymerization to react 3,5-dihydroxy-4-methylbenzoic acid with trimesoyl chloride. This polyester membrane exhibits substantial water permeability, high rejection for sodium chloride and boron, and complete resistance toward chlorine. The ultrasmooth, low-energy surface of the membrane also prevents fouling and mineral scaling compared with polyamide membranes. These membranes could increasingly challenge polyamide membranes by further optimizing water-salt selectivity, offering a path to considerably reducing pretreatment steps in desalination.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1126/science.adk0632 | DOI Listing |
Biofouling
September 2025
DuPont, DuPont Water Solutions, Freienbach, Switzerland.
Imaging techniques are important for biofilm studies. Biofilm samples should ideally be visualised with minimal sample preparation so as not to alter their original structure. However, this can be challenging and resource-intensive in most cases.
View Article and Find Full Text PDFFront Chem
August 2025
Departamento de Ingeniería en Metalurgia, Universidad de Atacama, Copiapó, Chile.
The growing global demand for clean and sustainable energy has intensified the development of novel technologies capable of harnessing naturally available resources. Among these, blue energy, referring to the power generated from the mixing of waters with different salinities, has emerged as a promising yet underutilized source. This perspective presents a comprehensive synthesis of recent advances in electrochemical harvesting systems, with a particular focus on Mixing Entropy Batteries (MEBs) as efficient, membrane-free devices for salinity gradient energy recovery.
View Article and Find Full Text PDFNat Commun
September 2025
Department of Civil & Environmental Engineering, University of California, Los Angeles, CA, USA.
In this study, we present a class of thin-film crosslinked (TFX) composite reverse osmosis (RO) membranes that resist physical compaction at ultrahigh pressures (up to 200 bar). Since RO membranes experience compaction at virtually all pressure ranges, the ability to resist compaction has widespread implications for RO membrane technology. The process described herein involves crosslinking a phase inverted porous polyimide (PI) support membrane followed by interfacial polymerization of a polyamide layer, thereby forming a fully thermoset composite membrane structure.
View Article and Find Full Text PDFWater Res
August 2025
Orange County Water District, 18700 Ward St, Fountain Valley, CA 92708, USA.
N-nitrosodimethylamine (NDMA) is a carcinogen of significant concern in potable water treatment but real-time monitoring of NDMA is not yet feasible with current analytical techniques or mechanistic models. Measuring NDMA and its precursors is time- and labor-intensive which often results in conservative, energy-intensive NDMA treatment approaches, such as operating UV at the maximum dose, to remove NDMA under all possible conditions. To reduce the energy required for NDMA treatment, data-driven modeling was used to simulate an NDMA soft sensor for real-time UV dose control.
View Article and Find Full Text PDFZoo Biol
August 2025
Scientific Services, Ezemvelo KZN Wildlife, Pietermaritzburg, South Africa.
The Pickersgill's reed frog, Hyperolius pickersgilli (Raw 1982), is an Endangered frog species endemic to a narrow central coastal region of KwaZulu-Natal, South Africa. The Johannesburg Zoo's Amphibian Research Project breeds H. pickersgilli for release to the wild.
View Article and Find Full Text PDF