98%
921
2 minutes
20
In recent decades, the requirements for implantable medical devices have increased, but the risks of implant rejection still exist. These issues are primarily associated with poor osseointegration, leading to biofilm formation on the implant surface. This study focuses on addressing these issues by developing a biomaterial for implant coatings. 45S5 bioglass has been widely used in tissue engineering due to its ability to form a hydroxyapatite layer, ensuring a strong bond between the hard tissue and the bioglass. In this context, 45S5 bioglasses, modified by the incorporation of different amounts of copper oxide, from 0 to 8 mol%, were synthesized by the melt-quenching technique. The incorporation of Cu ions did not show a significant change in the glass structure. Since the bioglass exhibited the capacity for being polarized, thereby promoting the osseointegration effectiveness, the electrical properties of the prepared samples were studied using the impedance spectroscopy method, in the frequency range of 10-10 Hz and temperature range of 200-400 K. The effects of CuO on charge transport mobility were investigated. Additionally, the bioactivity of the modified bioglasses was evaluated through immersion tests in simulated body fluid. The results revealed the initiation of a Ca-P-rich layer formation on the surface within 24 h, indicating the potential of the bioglasses to enhance the bone regeneration process.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11048336 | PMC |
http://dx.doi.org/10.3390/biomimetics9040213 | DOI Listing |
Anal Chim Acta
November 2025
Department of Physics, University of Lucknow, Lucknow, India; Department of Physics and Astrophysics, University of Delhi, India. Electronic address:
Background: Water contamination is a global challenge, primarily due to heavy metal ions like lead (Pb), iron (Fe), cadmium (Cd), andmercury (Hg) as well as dyes. These pollutants enter the ecosystem from industrial waste and runoff, accumulate in the environment and pose a high risk to humans, animals and plants. Various sensors, such as colorimetric sensors, and electrochemical sensors have been developed to detect these ions and dyes.
View Article and Find Full Text PDFRedox Biol
September 2025
College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, Republic of Korea. Electronic address:
Copper oxide nanoparticles (CuONPs) are increasingly used across various industrial applications, raising concerns about their potential toxicity and necessitating comprehensive safety evaluations. In this study, we first evaluated the respiratory toxicity of CuONP exposure in a mouse model of asthma. CuONP exposure alone exacerbated asthma symptoms, as evidenced by increased airway hyperresponsiveness, inflammatory cell infiltration, and elevated cytokine production with increasing thioredoxin-interacting protein (TXNIP) expression.
View Article and Find Full Text PDFAdv Mater
September 2025
Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario, N6A 5B9, Canada.
Anode-free sulfide-based all-solid-state lithium metal batteries (ASSLMBs), which eliminate the need for a lithium metal anode during fabrication, offer superior energy density, enhanced safety, and simplified manufacturing. Their performance is largely influenced by the interfacial properties of the current collectors. Although previous studies have investigated the degradation of sulfide electrolytes on commonly used copper (Cu) and stainless steel (SS) current collectors, the impact of spontaneously formed surface oxides, such as copper oxide (CuO/CuO) and chromium oxide (CrO), on interfacial stability remains underexplored.
View Article and Find Full Text PDFLangmuir
September 2025
Key Laboratory of Green Chemical Engineering and Technology of College of Heilongjiang Province, School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150080, P. R. China.
In this study, copper-modified nanocarbon composites (OMC) were successfully prepared using two-dimensional carbon nanosheets as the material substrate, the low-temperature hydrothermal method as the main process, and copper nitrate as the modifier. The effects of the modifier dosage ratio, hydrothermal temperature, and residence time on the structure and hydrogen sulfide (HS) adsorption performance of OMC were investigated. The results show that the OMC with persistent free radicals and copper oxides prepared under the conditions of a mass ratio of copper nitrate to two-dimensional carbon nanosheets of 2, a hydrothermal temperature of 130 °C, and a time of 8 h, respectively, has the best adsorption performance for HS, with an adsorption sulfur capacity of up to 46.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
August 2025
School of Stomatology, Qingdao University, Qingdao 266023, PR China; Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao 266003, PR China.
White spot lesions (WSLs) are the most common complication of orthodontic treatment, compromising dental health and significantly affecting aesthetics. To address this clinical challenge, this study aims to develop a dual-functional therapeutic strategy that simultaneously promotes the remineralization of demineralized enamel and inhibits the activity of cariogenic bacteria, thereby achieving effective prevention and treatment of WSLs. A hollow double-shell structured CuO@N/C nanozyme (H-CuO@N/C) was synthesized using a one-step hydrothermal method.
View Article and Find Full Text PDF