98%
921
2 minutes
20
Azido-tetrazolo tautomerizations between azido N-heteroaromatic compounds and tetrazole-fused energetic materials can produce a new generation of high-energy density compounds. Density functional theory (DFT) computations are performed to explore the relationship between reaction barriers and electron densities of bonding N atoms, i.e., the terminal N and heterocyclic N atoms, for six reported tautomerizations. The results reveal four linear correlations between reverse reaction barriers () and the electron densities of N and N atoms in the product. N electron density (ρ) and N-N bond polarity, as measured by the difference between the electron densities on the two N atoms (Δρ = ρ - ρ) in products, are inversely proportional to the reverse reaction barriers. They are also proportional to the energy barrier differences between the forward and reverse reactions (Δ = - ). Polar solvents, including DMSO, water, and acetone, can effectively increase the reverse reaction barriers () by improving the stability of products. This regularity is further confirmed by its application to four additional tautomerizations and can be used to screen out unfavorable azido-tetrazolo tautomerization reactions and increase the success rate of such synthesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpca.4c00763 | DOI Listing |
J Phys Chem Lett
September 2025
State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300401, P. R. China.
Quantum dots (QDs) converted to micro light-emitting diodes (LEDs) have emerged as a promising technology for next-generation display devices. However, their commercial application has been hindered by the susceptibility of QDs to photodegradation when directly exposed to an open environment. Here, we develop functional ligand zinc bis[2-(methacryloyloxy)ethyl] phosphate (Zn(BMEP)) to passivate QD surface anions through a phosphine-mediated surface reaction.
View Article and Find Full Text PDFJ Chem Phys
September 2025
Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA.
The formation of carbinolamine represents the crucial initial step in the aldol reaction, specifically involving the interaction between p-nitrobenzaldehyde and acetone, facilitated by amine-catalyzed mesoporous silica nanoparticles (amine-MSN). In this process, a nitrogen atom from propylamine, which acts as the catalytic moiety, engages in the formation of a covalent bond with a carbon atom from acetone, leading to the generation of a carbinolamine intermediate. This reaction is significantly influenced by the presence of silanol groups located on the surface of the amine-MSN, which contribute to the catalytic activity.
View Article and Find Full Text PDFACS Synth Biol
September 2025
Department of Chemical Engineering, Columbia University, New York, New York 10027, United States.
Synthetic biology often employs heterologous enzymatic reactions to reprogram cell metabolism or otherwise introduce novel functions. However, precise control of a particular metabolic pathway can be difficult to achieve because cofactors are shared with endogenous enzymes from a common pool. Recently, the use of noncanonical cofactors (NCCs) has emerged as a promising approach to bypass this problem by isolating desired reactions without the need for a physical barrier.
View Article and Find Full Text PDFPhys Chem Chem Phys
September 2025
Computational Inorganic Chemistry Group, Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502284, India.
Over the past few years, alkali and alkaline earth metals have emerged as alternative catalysts to transition metal organometallics to catalyze the hydroboration of unsaturated compounds. A highly selective and cost-effective lithium-catalyzed method for the synthesis of an organoborane has been established based on the addition of a B-H bond to an unsaturated bond (polarized or unpolarized) using pinacolborane (HBPin). In the present work, the neosilyllithium-catalyzed hydroboration of nitriles, aldehydes, and esters has been investigated using high-level DLPNO-CCSD(T) calculations to unravel the mechanistic pathways and substrate-dependent reactivity.
View Article and Find Full Text PDFPhys Chem Chem Phys
September 2025
Jiangxi Provincial Key Laboratory of Multidimensional Intelligent Perception and Control, School of Energy and Mechanical Engineering, Jiangxi University of Science and Technology, Nanchang, 330013, Jiangxi Province, China.
The quest for sustainable and clean energy sources has led to significant research into photocatalytic water splitting, a process that converts solar energy into hydrogen fuel. This study demonstrates constructing a high-performance CdTe/CN van der Waals heterojunction for solar-driven water splitting hydrogen evolution. The proposed CdTe/CN heterojunction, investigated using first-principles calculations, integrates favorable structural stability and features a direct bandgap of 1.
View Article and Find Full Text PDF