Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Damaged DNA-binding protein-1 (DDB1)- and CUL4-associated factor 12 (DCAF12) serves as the substrate recognition component within the Cullin4-RING E3 ligase (CRL4) complex, capable of identifying C-terminal double-glutamic acid degrons to promote the degradation of specific substrates through the ubiquitin proteasome system. Melanoma-associated antigen 3 (MAGEA3) and T-complex protein 1 subunit epsilon (CCT5) proteins have been identified as cellular targets of DCAF12. To further characterize the interactions between DCAF12 and both MAGEA3 and CCT5, we developed a suite of biophysical and proximity-based cellular NanoBRET assays showing that the C-terminal degron peptides of both MAGEA3 and CCT5 form nanomolar affinity interactions with DCAF12 in vitro and in cells. Furthermore, we report here the 3.17 Å cryo-EM structure of DDB1-DCAF12-MAGEA3 complex revealing the key DCAF12 residues responsible for C-terminal degron recognition and binding. Our study provides new insights and tools to enable the discovery of small molecule handles targeting the WD40-repeat domain of DCAF12 for future proteolysis targeting chimera design and development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11044963PMC
http://dx.doi.org/10.1093/pnasnexus/pgae153DOI Listing

Publication Analysis

Top Keywords

magea3 cct5
12
interactions dcaf12
8
c-terminal degron
8
dcaf12
6
probing crl4
4
crl4 interactions
4
magea3
4
interactions magea3
4
cct5
4
cct5 di-glu
4

Similar Publications

Article Synopsis
  • DCAF12 is a protein that identifies specific degradation signals in other proteins to facilitate their breakdown via the ubiquitin proteasome system.
  • Research found that DCAF12 interacts with melanoma-associated antigen 3 (MAGEA3) and T-complex protein 1 subunit epsilon (CCT5), using advanced techniques to study these interactions.
  • The cryo-EM structure of the DDB1-DCAF12-MAGEA3 complex provided detailed insights into how DCAF12 recognizes and binds to these signals, aiding future drug development targeting this protein's domain.
View Article and Find Full Text PDF