Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A comparative assessment of heavy metal accumulation potential in four distinct marine benthic bioindicators: the bivalve Perna perna, the sponge Callyspongia fibrosa, the sea urchin Tripneustes gratilla, and the gastropod Purpura bufo were conducted. These organisms were collected from the same location, and the concentration of ten heavy metals was analyzed in water, sediment and various body parts of the organisms. The bioaccumulation potential was evaluated using the bio-water accumulation factor and bio-sediment accumulation factor. There was significant variation in the bioaccumulation potential of each organism with respect to different metals. The sponge proved to be a reliable indicator of Cd with a highest concentration of 2.60 μg/g. Sea urchin accumulated high concentrations of Cr (16.98 μg/g) and Pb (4.80 μg/g), whereas Cu was predominant (21.05 μg/g) in gastropod, followed by bivalve (17.67 μg/g). The concentration of metals in hard parts was found to be lower than in the tissues.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.marpolbul.2024.116374DOI Listing

Publication Analysis

Top Keywords

sea urchin
12
heavy metal
8
metal accumulation
8
bioaccumulation potential
8
accumulation factor
8
accumulation
4
accumulation analysis
4
analysis bivalve
4
bivalve sponge
4
sponge sea
4

Similar Publications

Thyroid hormones (THs) are essential regulators of metabolism, homeostasis, and development in metazoans. The canonical genomic pathway involves THs binding to nuclear thyroid hormone receptors (NTHRs), which modulate gene expression in vertebrates. In contrast, non-genomic pathways involve THs interacting with membrane-bound or cytoplasmic receptors.

View Article and Find Full Text PDF

Since Hans Driesch's pioneering work in 1891, it has been known that animal embryos can develop into complete individuals even when divided. However, the developmental processes and molecular mechanisms enabling this self-organization remain poorly understood. In this study, we revisit Driesch's experiments by examining the development of isolated 2-cell stage blastomeres in the sea urchin, Hemicentrotus pulcherrimus.

View Article and Find Full Text PDF

This study examined the effects of calcium, magnesium, and potassium ion concentrations on through seven experimental rearing groups: two calcium ion levels (550 mg/L and 733 mg/L), two magnesium ion levels (1727 mg/L and 2302 mg/L), two potassium ion levels (533 mg/L and 710 mg/L), and a control. After 45 days of cultivation, 733 mg/L of calcium ions significantly reduced the survival rate, while 550 mg/L of calcium ions had no significant adverse effects on survival, growth (SGR), the feed conversion ratio (FCR), gonad colour, or immune enzyme activity, and it significantly increased the gonad index (GI). Meanwhile, 2302 mg/L of magnesium ions caused 100% mortality within 2 days, and 1727 mg/L of magnesium ions significantly reduced the survival rate and SGR while increasing the FCR.

View Article and Find Full Text PDF

The sunflower star, Pycnopodia helianthoides, was a top benthic predator throughout its former range from Alaska to northern Mexico, until its populations were devastated starting in 2013 by a disease known as seastar wasting. The subsequent absence of sunflower stars from northern California waters was coincident with a dramatic ecological phase shift from healthy bull kelp forests (Nereocystis luetkeana) to barrens formed by purple sea urchins (Strongylocentrotus purpuratus), a prey of sunflower stars. Modeling suggests that restoration and resilience of kelp forests can be enhanced by the return of sunflower stars.

View Article and Find Full Text PDF

Chronic wounds and skin ulcers pose significant challenges to healthcare systems globally, necessitating innovative approaches to accelerate healing processes. Biomaterial-based therapies have emerged as promising solutions for tissue regeneration. This study focuses on valorization of sea urchin waste toward the development and characterization of collagen-based scaffolds added with polyhydroxynaphthoquinone (PHNQ) antioxidants, successfully incorporated into biomaterials at optimal ratio, enhancing scaffold stability and integrity.

View Article and Find Full Text PDF