Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Tubulin, one of the most abundant cytoskeletal building blocks, has numerous isotypes in metazoans encoded by different conserved genes. Whether these distinct isotypes form cell type- and context-specific microtubule structures is poorly understood. Based on a cohort of 12 patients with primary ciliary dyskinesia as well as mouse mutants, we identified and characterized variants in the isotype that specifically perturbed centriole and cilium biogenesis. Distinct variants differentially affected microtubule dynamics and cilia formation in a dominant-negative manner. Structure-function studies revealed that different TUBB4B variants disrupted distinct tubulin interfaces, thereby enabling stratification of patients into three classes of ciliopathic diseases. These findings show that specific tubulin isotypes have distinct and nonredundant subcellular functions and establish a link between tubulinopathies and ciliopathies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7616230PMC
http://dx.doi.org/10.1126/science.adf5489DOI Listing

Publication Analysis

Top Keywords

ciliopathy patient
4
variants
4
patient variants
4
variants reveal
4
reveal organelle-specific
4
organelle-specific functions
4
functions tubb4b
4
tubb4b axonemal
4
axonemal microtubules
4
microtubules tubulin
4

Similar Publications

Retinitis pigmentosa (RP) affects around 1 in 4000 individuals and represents approximately 25% of cases of vision loss in adults, through death of retinal rod and cone photoreceptor cells. It remains a largely untreatable disease, and research is needed to identify potential targets for therapy. Mutations in 94 different genes have been identified as causing RP, including AGBL5 which encodes the main deglutamylase that regulates and maintains functional levels of cilia tubulin glutamylation, which is essential to initiate ciliogenesis, maintain cilia stability and motility.

View Article and Find Full Text PDF

Trisomy 13 is a chromosomal disorder frequently associated with congenital anomalies, including polycystic kidney disease (PKD). Although the link between trisomy 13 and PKD is recognized, the timing and progression of renal cyst development remain unclear. We report a male neonate with trisomy 13 in whom we performed serial renal ultrasounds, enabling real-time monitoring of PKD progression.

View Article and Find Full Text PDF

Purpose Of Review: This review summarizes the clinical symptoms of primary ciliary dyskinesia (PCD) beginning at birth and current approaches for confirming diagnosis. Strengths and limitations of innovative adjunctive tests to improve detection are discussed, ultimately highlighting the importance of PCD expert networks to develop standardized guidelines and develop a standalone diagnostic tool.

Recent Findings: PCD is underdiagnosed globally, reflecting overall awareness of this disease and limitations of diagnostic approaches.

View Article and Find Full Text PDF

Truncating Mutations in BBS10 and BBS12 Impair Proteostasis and Ciliary Architecture in Bardet-Biedl Syndrome.

Exp Eye Res

September 2025

Department of Ophthalmology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan Eye Hospital, Zhengzhou, Henan, China; Henan Key Laboratory of Ophthalmology and Visual Science, Henan Eye Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China; Eye institu

Bardet-Biedl Syndrome (BBS) is a rare autosomal recessive ciliopathy characterized by genetic heterogeneity. Despite significant progress in understanding the BBSome-coding genes associated with ciliopathies, the pathogenesis linked to mutations in chaperonin-coding genes (BBS6, BBS10, and BBS12) remains poorly defined. This study aims to confirm the genetic diagnosis of BBS and elucidate the pathological mechanisms in causative genes of BBS10 and BBS12.

View Article and Find Full Text PDF

Introduction: A congenital optic nerve head anomaly (CONHA) is an umbrella term for structurally abnormal optic nerve heads present at birth which may lead to vision loss. The potential roles of motile and non-motile ciliopathies in this process are not well understood. This report describes a pediatric case of CONHA and implicates a motile ciliopathy in a possible mechanism that affects embryogenesis of the optic nerve head.

View Article and Find Full Text PDF