Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Vision provides animals with detailed information about their surroundings, conveying diverse features such as color, form, and movement across the visual scene. Computing these parallel spatial features requires a large and diverse network of neurons, such that in animals as distant as flies and humans, visual regions comprise half the brain's volume. These visual brain regions often reveal remarkable structure-function relationships, with neurons organized along spatial maps with shapes that directly relate to their roles in visual processing. To unravel the stunning diversity of a complex visual system, a careful mapping of the neural architecture matched to tools for targeted exploration of that circuitry is essential. Here, we report a new connectome of the right optic lobe from a male central nervous system FIB-SEM volume and a comprehensive inventory of the fly's visual neurons. We developed a computational framework to quantify the anatomy of visual neurons, establishing a basis for interpreting how their shapes relate to spatial vision. By integrating this analysis with connectivity information, neurotransmitter identity, and expert curation, we classified the ~53,000 neurons into 727 types, about half of which are systematically described and named for the first time. Finally, we share an extensive collection of split-GAL4 lines matched to our neuron type catalog. Together, this comprehensive set of tools and data unlock new possibilities for systematic investigations of vision in , a foundation for a deeper understanding of sensory processing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11042306PMC
http://dx.doi.org/10.1101/2024.04.16.589741DOI Listing

Publication Analysis

Top Keywords

visual
8
visual system
8
visual neurons
8
neurons
5
connectome-driven neural
4
neural inventory
4
inventory complete
4
complete visual
4
system vision
4
vision animals
4

Similar Publications

In the visual cortices, receptive fields (RFs) are arranged in a gradient from small sizes in the center of the visual field to the largest sizes at the periphery. Using functional magnetic resonance imaging (fMRI) mapping of population RFs, we investigated RF adaptation in V1, V2, and V3 in patients after long-term photoreceptor degeneration affecting the central (Stargardt disease [STGD]) and peripheral (Retinitis Pigmentosa [RP]) regions of the retina. In controls, we temporarily limited the visual field to the central 10° to model peripheral loss.

View Article and Find Full Text PDF

Background: Migraine care is often suboptimal owing to undertreatment, variation in clinical outcomes and administration methods among existing treatments, and between- and within-individual heterogeneity in the clinical course of migraine. In response to these challenges, preference studies have been increasingly conducted to inform treatment decision-making and development. However, gaps remain in understanding how treatment preferences have been assessed across different migraine studies.

View Article and Find Full Text PDF

The Effects of Mesenchymal Stem Cell-Derived Exosomes on the Attenuation of Dry Eye Disease in Sjögren Syndrome Animal Model.

Tissue Eng Regen Med

September 2025

Department of Ophthalmology and Visual Science, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, #505 BanPo-Dong, SeoCho-Gu, Seoul, 06591, Republic of Korea.

Background: Sjögren's syndrome (SS) is a chronic autoimmune disease delineated by excessive lymphocyte infiltration to the lacrimal or salivary glands, leading to dry eye and dry mouth. Exosomes secreted from mesenchymal stem cells (MSC) are known to have anti-inflammatory and tissue regeneration abilities. This study endeavored to demonstrate the effect of MSC-derived exosomes on the clinical parameter of dry eyes and associated pathology in SS mouse model.

View Article and Find Full Text PDF

Visualization support for remote collaborative aneurysm treatment planning.

Int J Comput Assist Radiol Surg

September 2025

Institute of Computer Science, Friedrich-Schiller-Universität, Fürstengraben 1, 07743, Jena, Thuringia, Germany.

Purpose: Cerebral aneurysms are blood-filled bulges that form at weak points in blood vessel walls, and their rupture can lead to life-threatening consequences. Given the high risk associated with these aneurysms, thorough examination and analysis are essential for determining appropriate treatment. While existing tools such as ANEULYSIS and its web-based counterpart WEBANEULYSIS provide interactive means for analyzing simulated aneurysm data, they lack support for collaborative analysis, which is crucial for enhancing interpretation and improving treatment decisions in medical team meetings.

View Article and Find Full Text PDF

Rationale And Objectives: Double expression lymphoma (DEL) is an independent high-risk prognostic factor for primary CNS lymphoma (PCNSL), and its diagnosis currently relies on invasive methods. This study first integrates radiomics and habitat radiomics features to enhance preoperative DEL status prediction models via intratumoral heterogeneity analysis.

Materials And Methods: Clinical, pathological, and MRI imaging data of 139 PCNSL patients from two independent centers were collected.

View Article and Find Full Text PDF