Article Synopsis

  • T cell receptor (TCR) gene therapy involves genetically modifying patient T cells to target tumors more effectively, but finding the right TCRs can be difficult due to the limited availability of tumor-specific T cells.
  • Researchers developed a high-throughput method for creating personalized TCR libraries in one-step reactions, allowing for efficient screening against tumors.
  • This approach successfully identified numerous effective TCRs from tumor-infiltrating lymphocytes that can recognize unique neoantigens specific to individual patients.

Video Abstracts
Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

T cell receptor (TCR) gene therapy is a potent form of cellular immunotherapy in which patient T cells are genetically engineered to express TCRs with defined tumor reactivity. However, the isolation of therapeutic TCRs is complicated by both the general scarcity of tumor-specific T cells among patient T cell repertoires and the patient-specific nature of T cell epitopes expressed on tumors. Here we describe a high-throughput, personalized TCR discovery pipeline that enables the assembly of complex synthetic TCR libraries in a one-pot reaction, followed by pooled expression in reporter T cells and functional genetic screening against patient-derived tumor or antigen-presenting cells. We applied the method to screen thousands of tumor-infiltrating lymphocyte (TIL)-derived TCRs from multiple patients and identified dozens of CD4 and CD8 T-cell-derived TCRs with potent tumor reactivity, including TCRs that recognized patient-specific neoantigens.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41587-024-02210-6DOI Listing

Publication Analysis

Top Keywords

tumor reactivity
8
tcrs
5
discovery tumor-reactive
4
cell
4
tumor-reactive cell
4
cell receptors
4
receptors massively
4
massively parallel
4
parallel library
4
library synthesis
4

Similar Publications

Chrysotobibenzyl, a bioactive ingredient from Dendrobium chrysotoxum, exhibits potent anti-tumor activity. However, its metabolic profiles remain unelucidated. This study aimed to disclose the metabolic fates of chrysotobibenzyl using human liver fractions.

View Article and Find Full Text PDF

With the approval of the antibody-drug conjugate enfortumab vedotin (EV), NECTIN4 has emerged as a bona fide therapeutic target in urothelial carcinoma (UC). Here, we report the development of a NECTIN4-directed chimeric antigen receptor (CAR) T cell, which exhibits reactivity across cells expressing a range of endogenous NECTIN4, with enhanced activity in high expressors. We demonstrate that the PPARγ pathway, critical for luminal differentiation, transcriptionally controls NECTIN4, and that the PPARγ agonist rosiglitazone primes and augments NECTIN4 expression, thereby increasing sensitivity to NECTIN4-CAR T cell-mediated killing.

View Article and Find Full Text PDF

Self-immolative fluorinated nanotheranostics amplifying F MRI signals for tumor-specific imaging and photodynamic therapy.

J Control Release

September 2025

School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, Guangdong, China; Dongguan Liaobu Hospital, Dongguan 523400, Guangdong, China. Electronic address:

Fluorine-19 magnetic resonance imaging (F MRI) offers distinct advantages, including background-free signal detection, quantitative analysis, and deep tissue penetration. However, its application is currently limited by challenges associated with existing F MRI contrast agents, such as short transverse relaxation times (T), limited imaging sensitivity, and suboptimal biocompatibility. To overcome these limitations, a glutathione (GSH)-responsive triblock copolymer (PB7), featuring self-immolative characteristics, has been developed.

View Article and Find Full Text PDF

The tumor microenvironment (TME) imposes immunologic and metabolic stresses sufficient to deviate immune cell differentiation into dysfunctional states. Oxidative stress originating in the mitochondria can induce DNA damage, most notably telomeres. Here, we show that dysfunctional T cells in cancer did not harbor short telomeres indicative of replicative senescence but rather harbored damaged telomeres, which we hypothesized arose from oxidative stress.

View Article and Find Full Text PDF

The voltage-dependent anion channel (VDAC) family proteins can be subdivided into three isoforms: VDAC1, VDAC2, and VDAC3. As core channels of the mitochondrial outer membrane, these proteins exhibit paradoxical regulatory roles in cancer development. This review systematically summarizes their structural and functional characteristics, as well as the contradictory mechanisms in tumorigenesis and progression.

View Article and Find Full Text PDF