98%
921
2 minutes
20
Background: Skeletal muscle dysfunction is a common extrapulmonary manifestation of chronic obstructive pulmonary disease (COPD). Alterations in skeletal muscle myosin heavy chain expression, with reduced type I and increased type II myosin heavy chain expression, are associated with COPD severity when studied in largely male cohorts. The objectives of this study were (1) to define an abnormal myofibre proportion phenotype in both males and females with COPD and (2) to identify transcripts and transcriptional networks associated with abnormal myofibre proportion in COPD.
Methods: Forty-six participants with COPD were assessed for body composition, strength, endurance and pulmonary function. Skeletal muscle biopsies from the vastus lateralis were assayed for fibre-type distribution and cross-sectional area via immunofluorescence microscopy and RNA-sequenced to generate transcriptome-wide gene expression data. Sex-stratified k-means clustering of type I and IIx/IIax fibre proportions was used to define abnormal myofibre proportion in participants with COPD and contrasted with previously defined criteria. Single transcripts and weighted co-expression network analysis modules were tested for correlation with the abnormal myofibre proportion phenotype.
Results: Abnormal myofibre proportion was defined in males with COPD (n = 29) as <18% type I and/or >22% type IIx/IIax fibres and in females with COPD (n = 17) as <36% type I and/or >12% type IIx/IIax fibres. Half of the participants with COPD were classified as having an abnormal myofibre proportion. Participants with COPD and an abnormal myofibre proportion had lower median handgrip strength (26.1 vs. 34.0 kg, P = 0.022), 6-min walk distance (300 vs. 353 m, P = 0.039) and forced expiratory volume in 1 s-to-forced vital capacity ratio (0.42 vs. 0.48, P = 0.041) compared with participants with COPD and normal myofibre proportions. Twenty-nine transcripts were associated with abnormal myofibre proportions in participants with COPD, with the upregulated NEB, TPM1 and TPM2 genes having the largest fold differences. Co-expression network analysis revealed that two transcript modules were significantly positively associated with the presence of abnormal myofibre proportions. One of these co-expression modules contained genes classically associated with muscle atrophy, as well as transcripts associated with both type I and type II myofibres, and was enriched for genetic loci associated with bone mineral density.
Conclusions: Our findings indicate that there are significant transcriptional alterations associated with abnormal myofibre proportions in participants with COPD. Transcripts canonically associated with both type I and type IIa fibres were enriched in a co-expression network associated with abnormal myofibre proportion, suggesting altered transcriptional regulation across multiple fibre types.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11154789 | PMC |
http://dx.doi.org/10.1002/jcsm.13473 | DOI Listing |
Brain
July 2025
Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan.
X-linked myotubular myopathy is a severe congenital muscle disorder caused by pathogenic variants in the MTM1 gene, which encodes the phosphoinositide phosphatase myotubularin. Muscle biopsies from patients with X-linked myotubular myopathy exhibit distinctive histopathological features, including small, rounded myofibres with centrally located nuclei, indicating a developmental defect in muscle maturation. While earlier studies have indicated that myotubularin dysfunction causes dysregulation of mechanistic target of rapamycin complex 1 (mTORC1) signalling, the underlying mechanisms and phenotypic impact on human muscle cells remain poorly understood.
View Article and Find Full Text PDFmedRxiv
June 2025
Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands, WA, Australia.
Tubulinopathies encompass a wide spectrum of disorders resulting from variants in genes encoding α- and β-tubulins, the key components of microtubules. While previous studies have linked or dominantly inherited missense variants to neurodegenerative phenotypes, including amyotrophic lateral sclerosis, frontotemporal dementia, hereditary spastic ataxia, and more recently, an isolated report of congenital myopathy, the full phenotypic and genotypic spectrum of -related disorders remains incompletely characterised. In this multi-centre study, we identified 13 novel missense variants in 31 individuals from 19 unrelated families.
View Article and Find Full Text PDFRMD Open
March 2025
Physiology and Muscle function explorations, University hospital of Strasbourg, Strasbourg, France.
Introduction: Inflammatory myopathies (IM) are a group of severe autoimmune diseases, sharing some similarities, whose cause is unknown and treatment is empirical.While C-protein-induced myositis (CIM), the most currently used mouse model of IM, has removed some roadblocks to understand and improve the treatment of IM, it has only been partially characterised and its generation limited by poor reproducibility. This study aimed at optimising the generation and the characterisation of CIM.
View Article and Find Full Text PDFBone Joint Res
January 2025
Department of Medicine for Sports and Performing Arts, Osaka University Graduate School of Medicine, Suita, Japan.
Aims: Ultrasound-guided injection techniques are expected to enhance therapeutic efficacy for skeletal muscle injuries and disorders, but basic knowledge is lacking. The purpose of this study was to examine the diagnostic accuracy of ultrasound for abnormal skeletal muscle lesions, and to examine the distribution patterns of solution and cells injected into abnormal muscle lesions under ultrasound guidance.
Methods: A cardiotoxin (CTX)-induced muscle injury model was used.
Open Biol
October 2024
Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada K1H 8M5.