98%
921
2 minutes
20
Introduction: Digitizing cytology slides presents challenges because of their three-dimensional features and uneven cell distribution. While multi-Z-plane scan is a prevalent solution, its adoption in clinical digital cytopathology is hindered by prolonged scanning times, increased image file sizes, and the requirement for cytopathologists to review multiple Z-plane images.
Methods: This study presents heuristic scan as a novel solution, using an artificial intelligence (AI)-based approach specifically designed for cytology slide scanning as an alternative to the multi-Z-plane scan. Both the 21 Z-plane scan and the heuristic scan simulation methods were used on 52 urine cytology slides from three distinct cytopreparations (Cytospin, ThinPrep, and BD CytoRich™ [SurePath]), generating whole-slide images (WSIs) via the Leica Aperio AT2 digital scanner. The AI algorithm inferred the WSI from 21 Z-planes to quantitate the total number of suspicious for high-grade urothelial carcinoma or more severe cells (SHGUC+) cells. The heuristic scan simulation calculated the total number of SHGUC+ cells from the 21 Z-plane scan data. Performance metrics including SHGUC+ cell coverage rates (calculated by dividing the number of SHGUC+ cells identified in multiple Z-planes or heuristic scan simulation by the total SHGUC+ cells in the 21 Z-planes for each WSI), scanning time, and file size were analyzed to compare the performance of each scanning method. The heuristic scan's metrics were linearly estimated from the 21 Z-plane scan data. Additionally, AI-aided interpretations of WSIs with scant SHGUC+ cells followed The Paris System guidelines and were compared with original diagnoses.
Results: The heuristic scan achieved median SHGUC+ cell coverage rates similar to 5 Z-plane scans across three cytopreparations (0.78-0.91 vs. 0.75-0.88, p = 0.451-0.578). Notably, it substantially reduced both scanning time (137.2-635.0 s vs. 332.6-1,278.8 s, p < 0.05) and image file size (0.51-2.10 GB vs. 1.16-3.10 GB, p < 0.05). Importantly, the heuristic scan yielded higher rates of accurate AI-aided interpretations compared to the single Z-plane scan (62.5% vs. 37.5%).
Conclusion: We demonstrated that the heuristic scan offers a cost-effective alternative to the conventional multi-Z-plane scan in digital cytopathology. It achieves comparable SHGUC+ cell capture rates while reducing both scanning time and image file size, promising to aid digital urine cytology interpretations with a higher accuracy rate compared to the conventional single (optimal) plane scan. Further studies are needed to assess the integration of this new technology into compatible digital scanners for practical cytology slide scanning.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000538985 | DOI Listing |
Small
August 2025
Institute of Biological and Chemical Systems-Biological Information Processing, Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany.
High-precision micromanipulation techniques, including optical tweezers and hydrodynamic trapping, have garnered wide-spread interest. Recent advances in optofluidic multiplexed assembly and microrobotics demonstrate significant progress, particularly by iteratively applying laser-induced, localized flow fields to manipulate microparticles in viscous solutions. However, these approaches still face challenges such as undesired hydrodynamic coupling and instabilities when multiple particles are brought into close proximity.
View Article and Find Full Text PDFPLoS Genet
July 2025
Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, United States of America.
Detecting and quantifying the strength of selection is a major objective in population genetics. Since selection acts over multiple generations, many approaches have been developed to detect and quantify selection using genetic data sampled at multiple points in time. Such time-series genetic data is commonly analyzed using Hidden Markov Models, but in most cases, under the assumption of additive selection.
View Article and Find Full Text PDFAnn R Coll Surg Engl
July 2025
Introduction: Clinical predictor rules are useful heuristics that can inspire confidence in clinicians on the front line to make decisions that are safe and reproducible. Rules such as the Ottawa Ankle Rules can also reduce the number of unnecessary radiographs taken, reducing radiation exposure and cost, as well as improving quality of care.
Methods: A previous Delphi study delineated 11 variables associated with an increased likelihood of finding a mandibular fracture and 14 variables associated with an increased likelihood of finding a zygomatic fracture on plain film radiographs.
J Exp Biol
March 2025
Centre de Recherches sur la Cognition Animale, CNRS, Université Paul Sabatier, Toulouse 31062 cedex 09, France.
Solitary foraging insects such as desert ants rely heavily on vision for navigation. Although ants can learn visual scenes, it is unclear what cues they use to decide whether a scene is worth exploring at the first place. To investigate this, we recorded the motor behaviour of Cataglyphis velox ants navigating in a virtual reality setup and measured their lateral oscillations in response to various unfamiliar visual scenes under both closed-loop and open-loop conditions.
View Article and Find Full Text PDFPharm Res
November 2024
Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai, 201203, China.
Purpose: This study aimed to develop a new index, Distribution Uniformity Index (DUI), to assess the "intra-tablet" homogeneity.
Methods: High-resolution hyperspectral Raman imaging was adopted to scan a tablet to get the components' distribution. The heuristic algorithm was applied to generate a Raman heatmap with RGB colors quantitatively correlated with the concentrations of each component.