Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Uncovering the function of phytopathogen effectors is crucial for understanding mechanisms of pathogen pathogenicity and for improving our ability to protect plants from diseases. An increasing number of effectors have been predicted in various plant pathogens. Functional characterization of these effectors has become a major focus in the study of plant-pathogen interactions. In this study, we designed a novel screening system that combines the TMV (tobacco mosaic virus)-GFP vector and Agrobacterium-mediated transient expression in the model plant Nicotiana benthamiana. This system enables the rapid identification of effectors that interfere with plant immunity. The biological function of these effectors can be easily evaluated by observing the GFP fluorescence signal using a UV lamp within just a few days. To evaluate the TMV-GFP system, we initially tested it with well-described virulence and avirulence type III effectors from the bacterial pathogen Ralstonia solanacearum. After proving the accuracy and efficiency of the TMV-GFP system, we successfully screened a novel virulence effector, RipS1, using this approach. Furthermore, using the TMV-GFP system, we reproduced consistent results with previously known cytoplasmic effectors from a diverse array of pathogens. Additionally, we demonstrated the effectiveness of the TMV-GFP system in identifying apoplastic effectors. The easy operation, time-saving nature, broad effectiveness, and low technical requirements of the TMV-GFP system make it a promising approach for high-throughput screening of effectors with immune interference activity from various pathogens.

Download full-text PDF

Source
http://dx.doi.org/10.1111/tpj.16774DOI Listing

Publication Analysis

Top Keywords

tmv-gfp system
20
effectors
10
system
7
tmv-gfp
6
robust high-throughput
4
high-throughput functional
4
functional screening
4
screening assay
4
plant
4
assay plant
4

Similar Publications

The ability to efficiently screen plant pathogen effectors is crucial for understanding plant-pathogen interactions and developing disease-resistant crops. Traditional methods are often labor-intensive and time-consuming. Here, we present a robust, high-throughput screening assay using the tobacco mosaic virus-green fluorescent protein (TMV-GFP) vector system.

View Article and Find Full Text PDF

Uncovering the function of phytopathogen effectors is crucial for understanding mechanisms of pathogen pathogenicity and for improving our ability to protect plants from diseases. An increasing number of effectors have been predicted in various plant pathogens. Functional characterization of these effectors has become a major focus in the study of plant-pathogen interactions.

View Article and Find Full Text PDF

α-Expansin EXPA4 Positively Regulates Abiotic Stress Tolerance but Negatively Regulates Pathogen Resistance in Nicotiana tabacum.

Plant Cell Physiol

November 2018

Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, PR China.

Since they function as cell wall-loosening proteins, expansins can affect plant growth, developmental processes and environmental stress responses. Our previous study demonstrated that changes in Nicotiana tabacum α-expansin 4 (EXPA4) expression affect the sensitivity of tobacco to Tobacco mosaic virus [recombinant TMV encoding green fluorescent protein (TMV-GFP)] infection by Agrobacterium-mediated transient expression. In this study, to characterize the function of tobacco EXPA4 further, EXPA4 RNA interfernce (RNAi) mutants and overexpression lines were generated and assayed for their tolerance to abiotic stress and resistance to pathogens.

View Article and Find Full Text PDF

Chrysanthemums () are susceptible to (TMV). TMV-based expression vectors have been used in high-throughput experiments for production of foreign protein in plants and also expressing green fluorescent protein (GFP) to allow visualization of TMV movement. Here, we used TMV expressing the GFP to examine the infection of chrysanthemum by a TMV-based expression vector.

View Article and Find Full Text PDF

Hairy roots were used as an in vitro culture system for the propagation of wild-type and transgenic plant viruses. Tobacco mosaic virus (TMV) was added to the liquid culture medium at the same time as root inoculation. Hairy root growth was unaffected by viral infection.

View Article and Find Full Text PDF