Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Ryanodine receptor 2 (RyR2) is a large Ca-release channel in the sarcoplasmic reticulum (SR) of cardiac muscle cells. It serves to release Ca from the SR into the cytosol to initiate muscle contraction. RyR2 overactivation is associated with arrhythmogenic cardiac disease, but few specific inhibitors have been reported so far. Here, we identified an RyR2-selective inhibitor 1 from the chemical compound library and synthesized it from glycolic acid. Synthesis of various derivatives to investigate the structure-activity relationship of each substructure afforded another two RyR2-selective inhibitors 6 and 7, among which 6 was the most potent. Notably, compound 6 also inhibited Ca release in cells expressing the RyR2 mutants R2474S, R4497C and K4750Q, which are associated with cardiac arrhythmias such as catecholaminergic polymorphic ventricular tachycardia (CPVT). This inhibitor is expected to be a useful tool for research on the structure and dynamics of RyR2, as well as a lead compound for the development of drug candidates to treat RyR2-related cardiac disease.

Download full-text PDF

Source
http://dx.doi.org/10.1248/cpb.c24-00114DOI Listing

Publication Analysis

Top Keywords

structure-activity relationship
8
ryanodine receptor
8
cardiac disease
8
discovery structure-activity
4
relationship ryanodine
4
receptor inhibitor
4
inhibitor ryanodine
4
ryr2
4
receptor ryr2
4
ryr2 large
4

Similar Publications

The mitogen-activated protein kinase (MAPK) pathway-also known as the RAS/RAF/MEK/ERK pathway-is a critical signalling cascade involved in regulating cell growth, proliferation, and survival. First discovered in the early 1980s, the pathway's extracellular signal-regulated kinase (ERK) subfamily was identified in the 1990s. The ERK family includes several isoforms-ERK1, ERK2, ERK3, ERK5, and ERK6-with ERK1 (MAPK3) and ERK2 (MAPK1) being the most well-characterised and playing central roles in MAPK signalling.

View Article and Find Full Text PDF

Post-translational modifications (PTMs) are chemical modifications that occur on specific amino acid residues after protein biosynthesis, which can affect protein function by altering protein structure, localization and activity, thus expanding protein diversity. Extensive research has demonstrated that PTMs can regulate various metabolic processes, such as glucose and lipid metabolism, as well as immune modulation in tumor cells, thereby promoting tumor initiation, progression, and metastasis. In this article, we systematically review a class of emerging PTMs whose roles in tumor metabolism and immune regulation have gradually been recognized in recent years, including six types: lactylation, palmitoylation, SUMOylation, succinylation, crotonylation, and myristoylation.

View Article and Find Full Text PDF

A strategy for targeting tumor-associated hypoxia utilizes reductase enzyme-mediated cleavage to convert biologically inert prodrugs to their corresponding biologically active parent therapeutic agents selectively in areas of pronounced hypoxia. Small-molecule inhibitors of tubulin polymerization represent unique therapeutic agents for this approach, with the most promising functioning as both antiproliferative agents (cytotoxins) and as vascular disrupting agents (VDAs). VDAs selectively and effectively disrupt tumor-associated microvessels, which are typically fragile and chaotic in nature.

View Article and Find Full Text PDF

Molecular hybridization of isoniazid with hydrophobic aromatic moieties represents a promising strategy for the development of novel anti-tubercular therapeutics. In this study, a series of hybrid molecules (5a-i) was synthesized by linking isoniazid with aromatic sulfonate esters via a hydrazone bridge. Molecular docking studies revealed that these compounds interact effectively with the catalytic triad of the InhA enzyme (Y158, F149, and K165), suggesting their potential as InhA inhibitors.

View Article and Find Full Text PDF

Phosphorylation plays an important role in the activity of CDK2 and inhibitor binding, but the corresponding molecular mechanism is still insufficiently known. To address this gap, the current study innovatively integrates molecular dynamics (MD) simulations, deep learning (DL) techniques, and free energy landscape (FEL) analysis to systematically explore the action mechanisms of two inhibitors (SCH and CYC) when CDK2 is in a phosphorylated state and bound state of CyclinE. With the help of MD trajectory-based DL, key functional domains such as the loops L3 loop and L7 are successfully identified.

View Article and Find Full Text PDF