A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

A Deep Learning Model for Predicting Molecular Subtype of Breast Cancer by Fusing Multiple Sequences of DCE-MRI From Two Institutes. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Rationale And Objectives: To evaluate the performance of deep learning (DL) in predicting different breast cancer molecular subtypes using DCE-MRI from two institutes.

Materials And Methods: This retrospective study included 366 breast cancer patients from two institutes, divided into training (n = 292), validation (n = 49) and testing (n = 25) sets. We first transformed the public DCE-MRI appearance to ours to alleviate small-data-size and class-imbalance issues. Second, we developed a multi-branch convolutional-neural-network (MBCNN) to perform molecular subtype prediction. Third, we assessed the MBCNN with different regions of interest (ROIs) and fusion strategies, and compared it to previous DL models. Area under the curve (AUC) and accuracy (ACC) were used to assess different models. Delong-test was used for the comparison of different groups.

Results: MBCNN achieved the optimal performance under intermediate fusion and ROI size of 80 pixels with appearance transformation. It outperformed CNN and convolutional long-short-term-memory (CLSTM) in predicting luminal B, HER2-enriched and TN subtypes, but without demonstrating statistical significance except against CNN in TN subtypes, with testing AUCs of 0.8182 vs. [0.7208, 0.7922] (p=0.44, 0.80), 0.8500 vs. [0.7300, 0.8200] (p=0.36, 0.70) and 0.8900 vs. [0.7600, 0.8300] (p=0.03, 0.63), respectively. When predicting luminal A, MBCNN outperformed CNN with AUCs of 0.8571 vs. 0.7619 (p=0.08) without achieving statistical significance, and is comparable to CLSTM. For four-subtype prediction, MBCNN achieved an ACC of 0.64, better than CNN and CLSTM models with ACCs of 0.48 and 0.52, respectively.

Conclusion: Developed DL model with the feature extraction and fusion of DCE-MRI from two institutes enabled preoperative prediction of breast cancer molecular subtypes with high diagnostic performance.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.acra.2024.03.002DOI Listing

Publication Analysis

Top Keywords

breast cancer
16
deep learning
8
molecular subtype
8
dce-mri institutes
8
cancer molecular
8
molecular subtypes
8
mbcnn achieved
8
outperformed cnn
8
predicting luminal
8
statistical significance
8

Similar Publications