A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Exploring tumor heterogeneity in colorectal liver metastases by imaging: Unsupervised machine learning of preoperative CT radiomics features for prognostic stratification. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objectives: This study aimed to investigate tumor heterogeneity of colorectal liver metastases (CRLM) and stratify the patients into different risk groups of prognoses following liver resection by applying an unsupervised radiomics machine-learning approach to preoperative CT images.

Methods: This retrospective study retrieved clinical information and CT images of 197 patients with CRLM from The Cancer Imaging Archive (TCIA) database. Radiomics features were extracted from a segmented liver lesion identified at the portal venous phase. Those features which showed high stability, non-redundancy, and indicative information were selected. An unsupervised consensus clustering analysis on these features was adopted to identify subgroups of CRLM patients. Overall survival (OS), disease-free survival (DFS), and liver-specific DFS were compared between the identified subgroups. Cox regression analysis was applied to evaluate prognostic risk factors.

Results: A total of 851 radiomics features were extracted, and 56 robust features were finally selected for unsupervised clustering analysis which identified two distinct subgroups (96 and 101 patients respectively). There were significant differences in the OS, DFS, and liver-specific DFS between the subgroups (all log-rank p < 0.05). The subgroup with worse outcome using the proposed radiomics model was consistently associated with shorter OS, DFS, and liver-specific DFS, with hazard ratios of 1.78 (95 %CI: 1.12-2.83), 1.72 (95 %CI: 1.16-2.54), and 1.59 (95 %CI: 1.10-2.31), respectively. The general performance of this radiomics model outperformed the traditional Clinical Risk Score and Tumor Burden Score in the prognosis prediction after surgery for CRLM.

Conclusion: Radiomics features derived from preoperative CT images can reveal the heterogeneity of CRLM and stratify the patients with CRLM into subgroups with significantly different clinical outcomes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejrad.2024.111459DOI Listing

Publication Analysis

Top Keywords

radiomics features
12
tumor heterogeneity
8
heterogeneity colorectal
8
colorectal liver
8
liver metastases
8
features extracted
8
selected unsupervised
8
clustering analysis
8
dfs liver-specific
8
liver-specific dfs
8

Similar Publications