Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Deep learning models for variant pathogenicity prediction can recapitulate expert-curated annotations, but their performance remains unexplored on actual disease phenotypes in a real-world setting. Here, we apply three state-of-the-art pathogenicity prediction models to classify hereditary breast cancer gene variants in the UK Biobank. Predicted pathogenic variants in , and , but not and were associated with increased breast cancer risk. We explored gene-specific score thresholds for variant pathogenicity, finding that they could improve model performance. However, when specifically tasked with classifying variants of uncertain significance, the deep learning models were generally of limited clinical utility.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11023677 | PMC |
http://dx.doi.org/10.1101/2024.04.05.24305402 | DOI Listing |