Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background And Purpose: The onset of Huntington's disease (HD) usually occurs before the age of 50 years, and the median survival time from onset is 15 years. We investigated survival in patients with late-onset HD (LoHD) (age at onset ≥60 years) and the associations of the number of mutant CAG repeats and age at onset (AAO) with survival in patients with HD.

Methods: Patients with genetically confirmed HD at six referral centers in South Korea between 2000 and 2020 were analyzed retrospectively. Baseline demographic, clinical, and genetic characteristics and the survival status as at December 2020 were collected.

Results: Eighty-seven patients were included, comprising 26 with LoHD (AAO=68.77±5.91 years, mean±standard deviation; 40.54±1.53 mutant CAG repeats) and 61 with common-onset HD (CoHD) (AAO=44.12±8.61 years, 44.72±4.27 mutant CAG repeats). The ages at death were 77.78±7.46 and 53.72±10.86 years in patients with LoHD and CoHD, respectively (<0.001). The estimated survival time was 15.21±2.49 years for all HD patients, and 10.74±1.95 and 16.15±2.82 years in patients with LoHD and CoHD, respectively. More mutant CAG repeats and higher AAO were associated with shorter survival (hazard ratio [HR]=1.05, 95% confidence interval [CI]=1.01-1.09, =0.019; and HR=1.17, 95% CI=1.03-1.31, =0.013; respectively) for all HD patients. The LoHD group showed no significant factors associated with survival after disease onset, whereas the number of mutant CAG repeats had a significant effect (HR=1.12, 95% CI=1.01-1.23, =0.034) in the CoHD group.

Conclusions: Survival after disease onset was shorter in patients with LoHD than in those with CoHD. More mutant CAG repeats and higher AAO were associated with shorter survival in patients with HD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11220345PMC
http://dx.doi.org/10.3988/jcn.2023.0329DOI Listing

Publication Analysis

Top Keywords

mutant cag
12
cag repeats
12
clinical genetic
8
genetic characteristics
8
huntington's disease
8
south korea
8
survival patients
8
age onset
8
years
6
survival
5

Similar Publications

Huntington's disease (HD) is a progressive, autosomal dominant neurodegenerative disorder characterized by motor dysfunction, cognitive decline, and psychiatric disturbances. It is caused by CAG repeat expansions in the HTT gene, resulting in the formation of mutant huntingtin protein that aggregates and disrupts neuronal function. This review outlines the pathogenesis of HD, including genetic, molecular, and environmental factors.

View Article and Find Full Text PDF

Spinal and bulbar muscular atrophy (SBMA) is a CAG/polyglutamine (polyQ) repeat expansion disorder in which the mutant androgen receptor (AR) protein triggers progressive degeneration of the neuromuscular system in men. As the misfolded polyQ AR is the proximal mediator of toxicity, therapeutic efforts have focused on targeting the mutant protein, but these prior efforts have met with limited success in SBMA patients. Here, we examine the efficacy of small molecule AR proteolysis-targeting chimera (PROTAC) degraders that rapidly and potently promote AR ubiquitination and degradation by the proteasome.

View Article and Find Full Text PDF

Nucleotide repeat expansions contribute to the development of a number of neurodegenerative diseases. Recent studies revealed that DNA sequences with CAG and other nucleotide repeat expansions can undergo bidirectional transcription, and the ensuing transcripts could be translated into proteins through repeat-associated non-AUG (RAN) translation; however, not much is known about the precise mechanisms underlying RAN translation. Here, we demonstrated that mA, installed by METTL3 and removed by FTO, promotes RAN translation in all three reading frames from the expanded CAG repeat RNA derived from the human gene, in which repeat expansion contributes to spinocerebellar ataxia type 3 (SCA3).

View Article and Find Full Text PDF

Huntington's disease (HD) is an autosomal, progressive, dominant inherited neurological disorder characterized by motor dysfunction, cognitive decline, and psychiatric symptoms. HD is caused by abnormal expansion of trinucleotide CAG in exon1 of the gene and the accumulation of mutant huntingtin (mHTT) fragments, which leads to neurotoxicity mainly in the brain's cortex region. This review aimed to collect current research on developing effective treatment strategies, including small-molecule approaches, gene therapies, and protein degradation techniques to reduce the mHTT levels.

View Article and Find Full Text PDF

Astrocyte-neuron combined targeting for CYP46A1 gene therapy in Huntington's disease.

Acta Neuropathol Commun

August 2025

NeuroGenCell, Inserm U 1127, CNRS UMR 7225, ICM, Institut du Cerveau, Sorbonne Université, Paris, France.

Huntington's disease (HD) is an autosomal dominant neurodegenerative disease caused by an abnormal expansion of cytosine-adenine-guanosine (CAG) trinucleotidein the huntingtin gene. Mutant huntingtin (mHTT) expression in neurons and glial cells affects neuron and astrocyte functions and leads to the loss of medium spiny neurons of the striatum. Brain cholesterol pathway is severely affected by HTT mutation in neurons and astrocytes, contributing to HD pathogenesis.

View Article and Find Full Text PDF