Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Flash Joule heating (FJH) is an emerging and profitable technology for converting inexhaustible biomass into flash graphene (FG). However, it is challenging to produce biomass FG continuously due to the lack of an integrated device. Furthermore, the high-carbon footprint induced by both excessive energy allocation for massive pyrolytic volatiles release and carbon black utilization in alternating current-FJH (AC-FJH) reaction exacerbates this challenge. Here, we create an integrated automatic system with energy requirement-oriented allocation to achieve continuous biomass FG production with a much lower carbon footprint. The programmable logic controller flexibly coordinated the FJH modular components to realize the turnover of biomass FG production. Furthermore, we propose pyrolysis-FJH nexus to achieve biomass FG production. Initially, we utilize pyrolysis to release biomass pyrolytic volatiles, and subsequently carry out the FJH reaction to focus on optimizing the FG structure. Importantly, biochar with appropriate resistance is self-sufficient to initiate the FJH reaction. Accordingly, the medium-temperature biochar-based FG production without carbon black utilization exhibited low carbon emission (1.9 g CO-eq g graphene), equivalent to a reduction of up to ~86.1% compared to biomass-based FG production. Undoubtedly, this integrated automatic system assisted by pyrolysis-FJH nexus can facilitate biomass FG into a broad spectrum of applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11018853PMC
http://dx.doi.org/10.1038/s41467-024-47603-yDOI Listing

Publication Analysis

Top Keywords

biomass production
12
biomass
8
biomass flash
8
flash graphene
8
pyrolytic volatiles
8
carbon black
8
black utilization
8
integrated automatic
8
automatic system
8
pyrolysis-fjh nexus
8

Similar Publications

The regulation of photoperiod and light intensity significantly affected Agastache rugosa by enhancing growth, modifying flowering dynamics, and promoting the accumulation of key phenolic compounds. Agastache rugosa is a medicinal and aromatic plant valued for its bioactive compounds, which contribute to its application in the flavoring, perfume, and food industries. However, variability in the composition of the bioactive compounds poses challenges for its commercial utilization.

View Article and Find Full Text PDF

Innovative UAPLE system coupled with UV-vis detection: a sustainable method for extracting and quantifying phenolics from rosemary.

Anal Chim Acta

November 2025

Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), Universidade Estadual de Campinas (UNICAMP), Rua Pedro Zaccaria 1300, Limeira, 13484-350, São Paulo, Brazil. Electronic address:

Background: Monitoring industrial processes is critical for ensuring consistent product quality, as consumers expect uniformity across different production batches. In the case of herbal extracts, such as rosemary hydroalcoholic extracts, it is essential to control the yield of target compounds to maintain both the expected quality and safety. Typically, these extracts are produced in an extractor and then analyzed separately in a laboratory (offline).

View Article and Find Full Text PDF

Cyanidin 3-O-glucoside and other anthocyanins affect enniatins production in Fusarium avenaceum.

Fungal Biol

October 2025

University of Tuscia, Department of Agriculture and Forest Sciences (DAFNE), Via San Camillo de Lellis SNC, Viterbo, Italy.

Fusarium Head Blight (FHB), caused by various Fusarium species, is a major threat to global cereal production. F. avenaceum is an important FHB pathogen producing enniatin mycotoxins.

View Article and Find Full Text PDF

Marine chitin valorization by ionic liquids and deep eutectic solvents: Dissolution, green extraction and conversion.

Bioresour Technol

September 2025

Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China; Technology Innovation Center for High-Efficiency Utilization of Bamboo-Based Biomass in Guizhou Province, Guiyang 550025, China. Electronic address:

Worldwide, marine shell waste generated from the seafood industry has emerged as a significant environmental challenge. Indeed, this shell waste represents an abundant source of various valuable products, particularly chitin. However, the extraction and subsequent processing of chitin are hindered by the inherently resistant structure of these chitin-rich feedstocks, coupled with strong hydrogen bonding between chitin chains.

View Article and Find Full Text PDF

Probiotics and non-starch carbohydrates as microecological agents: A review of classification strategies and feed applications.

Int J Biol Macromol

September 2025

Academy of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen, 361021, China; Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion, Huaqiao University, Xiamen, 361021, China; College of Chemical Engineering, Huaqiao University, Xiamen, 361021, China. Electronic address: l

Over recent decades, the indiscriminate use of antibiotics in animal production to enhance product quality and maximize economic returns has raised critical concerns. However, antibiotic misuse has led to the development of antimicrobial resistance in livestock and poses substantial health risks to humans through drug residue accumulation. In response, nations globally have progressively implemented bans on antibiotic inclusion in animal nutrition, redirecting scientific attention toward antibiotic-free feed additives that maintain or enhance animal health performance.

View Article and Find Full Text PDF