98%
921
2 minutes
20
Objectives: Combination therapy of lenvatinib and immune checkpoint inhibitors (CLICI) has emerged as a promising approach for managing unresectable hepatocellular carcinoma (HCC). However, the response to such treatment is observed in only a subset of patients, underscoring the pressing need for reliable methods to identify potential responders.
Materials & Methods: This was a retrospective analysis involving 120 patients with unresectable HCC. They were divided into training (n = 72) and validation (n = 48) cohorts. We developed an interpretable deep learning model using multiphase computed tomography (CT) images to predict whether patients will respond or not to CLICI treatment, based on the Response Evaluation Criteria in Solid Tumors, version 1.1 (RECIST v1.1). We evaluated the models' performance and analyzed the impact of each CT phase. Critical regions influencing predictions were identified and visualized through heatmaps.
Results: The multiphase model outperformed the best biphase and uniphase models, achieving an area under the curve (AUC) of 0.802 (95% CI = 0.780-0.824). The portal phase images were found to significantly enhance the model's predictive accuracy. Heatmaps identified six critical features influencing treatment response, offering valuable insights to clinicians. Additionally, we have made this model accessible via a web server at http://uhccnet.com/ for ease of use.
Conclusions: The integration of multiphase CT images with deep learning-generated heatmaps for predicting treatment response provides a robust and practical tool for guiding CLICI therapy in patients with unresectable HCC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11015163 | PMC |
http://dx.doi.org/10.1016/j.csbj.2024.04.001 | DOI Listing |
Proc Natl Acad Sci U S A
September 2025
Max Planck Institute for Solar System Research, Göttingen 37077, Germany.
Turbulent convection governs heat transport in both natural and industrial settings, yet optimizing it under extreme conditions remains a significant challenge. Traditional control strategies, such as predefined temperature modulation, struggle to achieve substantial enhancement. Here, we introduce a deep reinforcement learning (DRL) framework that autonomously discovers optimal control policies to maximize heat transfer in turbulent Rayleigh-Bénard convection.
View Article and Find Full Text PDFJMIR Med Inform
September 2025
Department of Radiology, Air Force Medical Center, Air Force Medical University, Fucheng Road 30, Haidian District, Beijing, CN.
Background: Lateral malleolar avulsion fracture (LMAF) and subfibular ossicle (SFO) are distinct entities that both present as small bone fragments near the lateral malleolus on imaging, yet require different treatment strategies. Clinical and radiological differentiation is challenging, which can impede timely and precise management. On imaging, magnetic resonance imaging (MRI) is the diagnostic gold standard for differentiating LMAF from SFO, whereas radiological differentiation on computed tomography (CT) alone is challenging in routine practice.
View Article and Find Full Text PDFNanoscale
September 2025
School of Materials Science and Engineering, Beihang University, Beijing 100191, China.
The challenge of photocatalytic hydrogen production has motivated a targeted search for MXenes as a promising class of materials for this transformation because of their high mobility and high light absorption. High-throughput screening has been widely used to discover new materials, but the relatively high cost limits the chemical space for searching MXenes. We developed a deep-learning-enabled high-throughput screening approach that identified 14 stable candidates with suitable band alignment for water splitting from 23 857 MXenes.
View Article and Find Full Text PDFInt J Comput Assist Radiol Surg
September 2025
Division of Plastic and Reconstructive Surgery, Neonatal and Pediatric Craniofacial Airway Orthodontics, Department of Surgery, Stanford University School of Medicine, 770 Welch Road, Palo Alto, CA, 94394, USA.
Background: Alveolar molding plate treatment (AMPT) plays a critical role in preparing neonates with cleft lip and palate (CLP) for the first reconstruction surgery (cleft lip repair). However, determining the number of adjustments to AMPT in near-normalizing cleft deformity prior to surgery is a challenging task, often affecting the treatment duration. This study explores the use of machine learning in predicting treatment duration based on three-dimensional (3D) assessments of the pre-treatment maxillary cleft deformity as part of individualized treatment planning.
View Article and Find Full Text PDFDiscov Nano
September 2025
Department of Rehabilitation Medicine, Rehabilitation Medical Center, Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
Immunoelectron Microscopy (IEM) is a technique that combines specific immunolabeling with high-resolution electron microscopic imaging to achieve precise spatial localization of biomolecules at the subcellular scale (< 10 nm) by using high-electron-density markers such as colloidal gold and quantum dots. As a core tool for analyzing the distribution of proteins, organelle interactions, and localization of disease pathology markers, it has irreplaceable value, especially in synapse research, pathogen-host interaction mechanism, and tumor microenvironment analysis. According to the differences in labeling sequence and sample processing, the IEM technology system can be divided into two categories: the first is pre-embedding labeling, which optimizes the labeling efficiency through the pre-exposure of antigenic epitopes and is especially suitable for the detection of low-abundance and sensitive antigens; the second is post-embedding labeling, which relies on the low-temperature resin embedding (e.
View Article and Find Full Text PDF