Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The present study investigates the applicability of the inlet boundary species Lewis number (combined effect of molecular and flow diffusion) for the nonpremixed moderate and intense low oxygen dilution (MILD) flames. A modified reactive solver named modifiedReactingFoam is developed by including the enthalpy flux in the energy equation and using modified model constants in OpenFOAM. The present solver is tested on the delft-jet-in-hot-coflow burner operating under a moderate and intense low oxygen dilution combustion environment. Along with the flame with Reynolds number 4100, eight other jet-in-hot-coflow flames are simulated to test the capability of the present proposed solver. The main aim of the current work is to investigate the efficacy of the proposed solver in predicting the velocity field, temperatures, and flame lift-off height for the considered flames with a significant reduction in computational time. The predictions with the modified eddy dissipation concept model are improved. However, a significant deviation is still observed in the downstream direction of the burner. The numerical simulations are performed with methane Lewis numbers of 0.9-1.14 by keeping the respective constant Lewis numbers for the inlet boundary species. The modifiedReactingFoam predictions at a methane Lewis number of 1.12 are in very close agreement with the experimental results. The maximum deviation in lift-off heights is within ±3% of the experimental results. The present modified solver outperformed the other combustion models in the literature and reduced the computational time up to 10 times with a combination of DLBFoam compared to the inbuilt solver.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11007852PMC
http://dx.doi.org/10.1021/acsomega.3c07212DOI Listing

Publication Analysis

Top Keywords

molecular flow
8
mild flames
8
inlet boundary
8
boundary species
8
lewis number
8
moderate intense
8
intense low
8
low oxygen
8
oxygen dilution
8
proposed solver
8

Similar Publications

NSUN6 Promotes Gastric Cancer Progression by Stabilizing CEBPZ mRNA in a mC-Dependent Manner.

Appl Biochem Biotechnol

September 2025

Operating Room, Shanghai Tianyou Hospital, No.528, Zhennan Road, Putuo District, Shanghai, 200331, China.

Gastric cancer (GC) is a malignant tumor originating from the epithelial cells of the gastric mucosa. The 5-methylcytosine (mC) modification refers to the addition of a methyl group to the fifth carbon atom of cytosine in RNA molecules. This study aimed to investigate the role of NOL1/NOP2/SUN domain (NSUN)6 in GC and its underlying molecular mechanisms.

View Article and Find Full Text PDF

Rapid detection of carbapenemases in multiresistant Gram-negative strains: evaluation of two tests.

Microbiol Spectr

September 2025

Institute for Medical Laboratory Diagnostics, Helios University Hospital, Witten/Herdecke University, Wuppertal, Germany.

Carbapenem-resistant organisms (CRO) have rapidly spread worldwide in recent years, posing a significant challenge to both human health and healthcare systems. Timely and accurate detection of CRO, especially carbapenemase-producing and non-fermenters, is crucial for clinical prevention and treatment of these infections. In the present study, we subjected more than 114 multidrug-resistant Gram-negative and non-fermenters to two tests for the timely detection of carbapenemases.

View Article and Find Full Text PDF

Background: Vaccination is a key strategy to reduce infectious disease mortality. In pediatric heart transplant recipients (HTRs), the use of immunosuppressive therapy weakens immune responses, increasing the risk of viral infections. This study aimed to evaluate the immunogenicity of hepatitis B virus (HBV) revaccination in this vulnerable population.

View Article and Find Full Text PDF

Chemically Lithiated Poly(vinylidene difluoride) with In Situ Generated LiF Nanofiller as Hybrid Artificial Layer for Stable Lithium Metal Anodes.

Small

September 2025

Key Laboratory of Electrochemical Power Sources of Hubei Province, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China.

Hybrid artificial layer based on inorganic/polymer composite endows superior toughness and mechanical strength, which can achieve high stability of lithium metal anode. However, the large particle size and uneven distribution of inorganic fillers hinder the uniform flow of lithium ions across the membrane, making it difficult to achieve smooth lithium metal deposition/stripping. In this work, a chemical lithiation-induced defluorination strategy is proposed to engineer  poly(vinylidene difluoride) (PVDF)-based artificial layers, enabling in situ incorporation of highly dispersed LiF nanofiller within the polymer matrix and precise control over the LiF content.

View Article and Find Full Text PDF

Efficacious suppression of primary and metastasized liver tumors by polyIC-loaded lipid nanoparticles.

Hepatology

September 2025

Department of Pathology, Department of Molecular Biology, Moores Cancer Center, University of California San Diego, La Jolla, CA 92037, USA.

Background And Aims: So far, there is no effective mechanism-based therapeutic agent tailored for liver tumors. Immune checkpoint inhibitors (ICIs) have demonstrated limited efficacy in liver cancer, often associated with severe adverse effects. Although poly-inosinic:cytidylic acid (polyIC) has shown an adjuvant effect when combined with anti-PD-L1 antibody (αPD-L1) in treating liver tumors in animal models, its systemic toxicity limits its clinical utility.

View Article and Find Full Text PDF