98%
921
2 minutes
20
Extensive research has demonstrated the potential of cell viscoelastic properties as intrinsic indicators of cell state, functionality, and disease. For this, several microfluidic techniques have been developed to measure cell viscoelasticity with high-throughput. However, current microchannel designs introduce complex stress distributions on cells, leading to inaccuracies in determining the stress-strain relationship and, consequently, the viscoelastic properties. Here, we introduce a novel approach using hyperbolic microchannels that enable precise measurements under a constant extensional stress and offer a straightforward stress-strain relationship, while operating at a measurement rate of up to 100 cells per second. We quantified the stresses acting in the channels using mechanical calibration particles made from polyacrylamide (PAAm) and found that the measurement buffer, a solution of methyl cellulose and phosphate buffered saline, shows strain-thickening following a power law up to 200 s. By measuring oil droplets with varying viscosities, we successfully detected changes in the relaxation times of the droplets and our approach could be used to get the interfacial tension and viscosity of liquid-liquid droplet systems from the same measurement. We further applied this methodology to PAAm microgel beads, demonstrating the accurate recovery of Young's moduli and the near-ideal elastic behavior of the beads. To explore the influence of altered cell viscoelasticity, we treated HL60 human leukemia cells with latrunculin B and nocodazole, resulting in clear changes in cell stiffness while relaxation times were only minimally affected. In conclusion, our approach offers a streamlined and time-efficient solution for assessing the viscoelastic properties of large cell populations and other microscale soft particles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3lc01061a | DOI Listing |
Retina
September 2025
Department of Ophthalmology, St. Michael's Hospital/Unity Health Toronto, Toronto, Ontario, Canada.
Purpose: To report reattachment rate (RR) of pars plana vitrectomy-suprachoroidal viscopexy (VIT-SCVEXY) for rhegmatogenous retinal detachment (RRD) repair. Additionally, this study compares the anatomic reattachment rate and functional outcomes of VIT-SCVEXY vs pars plana vitrectomy with traditional scleral buckle (PPV-SB) at postoperative month 3 and final follow-up.
Methods: A retrospective cohort study conducted at St.
Biomacromolecules
September 2025
Division of Pharmacy and Optometry, Manchester Institute of Biotechnology, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, M13 9PL Manchester, U.K.
This study investigates how hydrophobic and hydrophilic modifications at the C-terminus of the base peptide, KFEFEFKFK (KbpK), affect the hydrogel macroscopic properties. By the incorporation of phenylalanine (F, hydrophobic) and lysine (K, hydrophilic) residues, four variants, KbpK-K, KbpK-F, KbpK-KF, and KbpK-FK, were designed and evaluated. pH-concentration phase diagrams and Fourier transform infrared confirmed clear links showing how peptide hydrophobicity and charge influence β-sheet formation and macroscopic phase behavior.
View Article and Find Full Text PDFACS Macro Lett
September 2025
Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States.
Introducing dynamic covalent chemistries into polymer networks allows access to complex linear viscoelasticity, owing to the reversible nature of the dynamic bonds. While this macroscopic mechanical behavior is influenced by the dynamic exchange of these chemistries, connecting the microscopic dynamics to the bulk properties is hindered by the time scale conventional techniques can observe. Here, light scattering passive microrheology is applied to probe short-time dynamics of dynamic covalent networks that consist of telechelic benzalcyanoacetate (BCA) Michael acceptors and thiol-functionalized cross-linkers.
View Article and Find Full Text PDFMagn Reson Chem
September 2025
Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan.
We reveal contrasting behaviors in molecular motion between the two materials, including the identification of resonance-enhanced dynamic features in elastomers. We present a depth-resolved analysis of molecular dynamics in semicrystalline polytetrafluoroethylene (PTFE) and fully amorphous fluorinated elastomer (SIFEL) films using static-gradient solid-state F NMR imaging. By measuring spin-lattice relaxation rates ( ) at multiple frequencies and evaluating the corresponding spectral density functions, we reveal distinct dynamic behaviors between the two materials.
View Article and Find Full Text PDFFood Res Int
November 2025
School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China; Anqing Yixiu Green Food Innovation Research Institute, Anqing 246000, PR China. Electronic address:
This study presents a biopreservation method using sourdough co-fermented with Fructilactobacillus sanfranciscensis and Propionibacterium freudenreichii, optimizing conditions to 220 hydration and 24 h fermentation. The composite sourdough bread quality was evaluated through physicochemical, storage, sensory, and microbial tests, with mechanisms analyzed based on microstructure, rheology, and dough structure. Results showed that: first, the composite sourdough enhanced bread physicochemical properties, increasing volume, height-to-diameter ratio, elasticity, and resilience, while reducing baking loss, hardness, chewiness, and adhesiveness.
View Article and Find Full Text PDF