A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Automatic sleep-wake classification and Parkinson's disease recognition using multifeature fusion with support vector machine. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Aims: Sleep disturbance is a prevalent nonmotor symptom of Parkinson's disease (PD), however, assessing sleep conditions is always time-consuming and labor-intensive. In this study, we performed an automatic sleep-wake state classification and early diagnosis of PD by analyzing the electrocorticography (ECoG) and electromyogram (EMG) signals of both normal and PD rats.

Methods: The study utilized ECoG power, EMG amplitude, and corticomuscular coherence values extracted from normal and PD rats to construct sleep-wake scoring models based on the support vector machine algorithm. Subsequently, we incorporated feature values that could act as diagnostic markers for PD and then retrained the models, which could encompass the identification of vigilance states and the diagnosis of PD.

Results: Features extracted from occipital ECoG signals were more suitable for constructing sleep-wake scoring models than those from frontal ECoG (average Cohen's kappa: 0.73 vs. 0.71). Additionally, after retraining, the new models demonstrated increased sensitivity to PD and accurately determined the sleep-wake states of rats (average Cohen's kappa: 0.79).

Conclusion: This study accomplished the precise detection of substantia nigra lesions and the monitoring of sleep-wake states. The integration of circadian rhythm monitoring and disease state assessment has the potential to improve the efficacy of therapeutic strategies considerably.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11007385PMC
http://dx.doi.org/10.1111/cns.14708DOI Listing

Publication Analysis

Top Keywords

automatic sleep-wake
8
parkinson's disease
8
support vector
8
vector machine
8
sleep-wake scoring
8
scoring models
8
average cohen's
8
cohen's kappa
8
sleep-wake states
8
sleep-wake
5

Similar Publications