Specificity and dynamics of HO detoxification by the cytosolic redox regulatory network as revealed by in vitro reconstitution.

Redox Biol

Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, 33615, Bielefeld, Germany; CeBiTec, Bielefeld University, 33615, Bielefeld, Germany. Electronic address:

Published: June 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The thiol redox state is a decisive functional characteristic of proteins in cell biology. Plasmatic cell compartments maintain a thiol-based redox regulatory network linked to the glutathione/glutathione disulfide couple (GSH/GSSG) and the NAD(P)H system. The basic network constituents are known and in vivo cell imaging with gene-encoded probes have revealed insight into the dynamics of the [GSH]/[GSSG] redox potential, cellular HO and NAD(P)H+H amounts in dependence on metabolic and environmental cues. Less understood is the contribution and interaction of the network components, also because of compensatory reactions in genetic approaches. Reconstituting the cytosolic network of Arabidopsis thaliana in vitro from fifteen recombinant proteins at in vivo concentrations, namely glutathione peroxidase-like (GPXL), peroxiredoxins (PRX), glutaredoxins (GRX), thioredoxins, NADPH-dependent thioredoxin reductase A and glutathione reductase and applying Grx1-roGFP2 or roGFP2-Orp1 as dynamic sensors, allowed for monitoring the response to a single HO pulse. The major change in thiol oxidation as quantified by mass spectrometry-based proteomics occurred in relevant peptides of GPXL, and to a lesser extent of PRX, while other Cys-containing peptides only showed small changes in their redox state and protection. Titration of ascorbate peroxidase (APX) into the system together with dehydroascorbate reductase lowered the oxidation of the fluorescent sensors in the network but was unable to suppress it. The results demonstrate the power of the network to detoxify HO, the partially independent branches of electron flow with significance for specific cell signaling and the importance of APX to modulate the signaling without suppressing it and shifting the burden to glutathione oxidation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11022108PMC
http://dx.doi.org/10.1016/j.redox.2024.103141DOI Listing

Publication Analysis

Top Keywords

redox regulatory
8
regulatory network
8
redox state
8
network
7
redox
5
specificity dynamics
4
dynamics detoxification
4
detoxification cytosolic
4
cytosolic redox
4
network revealed
4

Similar Publications

Monitoring ferroptosis in vivo: Iron-driven volatile oxidized lipids as breath biomarkers.

Redox Biol

September 2025

Multi-Omics Platform, Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto, Japan; Human Biology Microbiome Quantum Research Center, Keio University School of Medicine, Tokyo, Japan. Electronic address:

Ferroptosis, an iron-dependent cell death mechanism characterized by excessive lipid peroxidation, has been implicated in numerous human diseases and organ pathologies. However, current detection methods necessitate invasive tissue sampling to assess lipid peroxidation, making noninvasive detection of ferroptosis in human subjects extremely challenging. In this study, we employed oxidative volatolomics to comprehensively characterize the volatile oxidized lipids (VOLs) produced during ferroptosis.

View Article and Find Full Text PDF

Dietary intake has an important influence on rates of fuel use during exercise, but the extent to which short-term diet changes affect peak fat oxidation (PFO) and the intensity at which this occurs (Fat) is unknown. This study examined the impact of diet-induced changes in substrate availability on PFO and Fat and the expression of key lipid-regulatory genes and proteins in skeletal muscle. Forty moderately to well-trained males (27 ± 5 years, V̇O 56.

View Article and Find Full Text PDF

The influence of different antioxidants on the properties of diacylglycerol based oleogels.

Food Res Int

November 2025

Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University,

Recently, the regulatory effect of natural antioxidants on oleogels has attracted the attention of scholars. Whether natural antioxidants with different structures can co-gel with gelators remains unclear. In this study, the impact of water-soluble (dihydroquercetin and epicatechin) and fat-soluble (lycopene and L-ascorbate palmitate) antioxidants on the physicochemical properties of diacylglycerol oleogels was investigated.

View Article and Find Full Text PDF

Rice Root Iron Plaque as a Mediator to Stimulate Methanotrophic Nitrogen Fixation.

Environ Sci Technol

September 2025

Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.

Iron plaque (IP) on rice root surfaces has been extensively documented as a natural barrier that effectively reduces contaminant bioavailability and accumulation. However, its regulatory mechanisms in rhizospheric methane oxidation and biological nitrogen fixation (BNF) remain elusive. This study reveals a previously unrecognized function of IP: mediating methanotrophic nitrogen fixation through coupled aerobic methane oxidation and IP reduction (Fe-MOX).

View Article and Find Full Text PDF

The NRF2/KEAP1 signaling pathway regulates the gene expression of numerous cytoprotective and detoxifying enzymes and is therefore essential for maintaining cellular redox homeostasis. Despite the increasing knowledge of NRF2 signaling complexity, dimethyl fumarate remains the sole NRF2-targeting therapy in clinical practice, used for multiple sclerosis. Ongoing research exploring the role of NRF2 in cancer, neurodegeneration, diabetes, and cardiovascular, renal, and liver diseases holds significant promise for future therapeutic innovation.

View Article and Find Full Text PDF