A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Making Waves: Towards data-centric water engineering. | LitMetric

Making Waves: Towards data-centric water engineering.

Water Res

Centre for Water Systems, University of Exeter, Exeter EX4 4QF, United Kingdom.

Published: June 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Artificial intelligence (AI) is expected to transform many scientific disciplines, with the potential to significantly accelerate scientific discovery. This perspective calls for the development of data-centric water engineering to tackle water challenges in a changing world. Building on the historical evolution of water engineering from empirical and theoretical paradigms to the current computational paradigm, we argue that a fourth paradigm, i.e., data-centric water engineering, is emerging driven by recent AI advances. Here we define a new framework for data-centric water engineering in which data are transformed into knowledge and insight through a data pipeline powered by AI technologies. It is proposed that data-centric water engineering embraces three principles - data-first, integration and decision making. We envision that the development of data-centric water engineering needs an interdisciplinary research community, a shift in mindset and culture in the academia and water industry, and an ethical and risk framework to guide the development and application of AI. We hope this paper could inspire research and development that will accelerate the paradigm shift towards data-centric water engineering in the water sector and fundamentally transform the planning and management of water infrastructure.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2024.121585DOI Listing

Publication Analysis

Top Keywords

water engineering
32
data-centric water
28
water
12
engineering
8
development data-centric
8
data-centric
7
making waves
4
waves data-centric
4
engineering artificial
4
artificial intelligence
4

Similar Publications