Analysis of Phase Separation of EARLY FLOWERING 3.

Methods Mol Biol

Leibniz-Institut für Gemüse-und Zierpflanzenbau, Theodor-Echtermeyer-Weg 1, Großbeeren, Germany.

Published: April 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Phase separation is an important mechanism for regulating various cellular functions. The EARLY FLOWERING 3 (ELF3) protein, an essential element of the EVENING COMPLEX (EC) involved in circadian clock regulation, has been shown to undergo phase separation. ELF3 is known to significantly influence elongation growth and flowering time regulation, and this is postulated to be due to whether the protein is in the dilute or phase-separated state. Here, we present a brief overview of methods for analyzing ELF3 phase separation in vitro, including the generation of phase diagrams as a function of pH and salt versus protein concentrations, optical microscopy, fluorescence recovery after photobleaching (FRAP), and turbidity assays.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-0716-3814-9_13DOI Listing

Publication Analysis

Top Keywords

phase separation
16
early flowering
8
analysis phase
4
separation
4
separation early
4
phase
4
flowering phase
4
separation mechanism
4
mechanism regulating
4
regulating cellular
4

Similar Publications

Distribution and Relative Size of Protein Binding Domains Cooperatively Influence Phase Separation of Protein-RNA Mixtures.

J Phys Chem B

September 2025

Hefei National Research Center for Physical Sciences at the Microscale and Key Laboratory of Precision and Intelligent Chemistry, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.

Multivalent protein-protein interactions play essential roles in mediating liquid-liquid phase separation (LLPS) that drives biomolecular condensate formation. Here, we systematically investigate how the spatial distribution and relative size of protein binding domains (PBDs) would influence LLPS in a mixture of spherical proteins and RNA single strands by using a patchy-particle polymer model, wherein each protein contains a fixed number of PBDs on the surface distributed closely or sparsely. Intriguingly, we find that LLPS behavior exhibits a nontrivial dependence on the cooperative interplay between PBD distribution and protein size: while sparsely distributed PBDs are more favorable to LLPS for small proteins, closely packed PBDs facilitate LLPS for larger counterparts.

View Article and Find Full Text PDF

The absorption of laser energy by plasma is of paramount importance for various applications. Collisional and resonant processes are often invoked for this purpose. However, in some contexts (e.

View Article and Find Full Text PDF

Polariton Spin Separation and Propagation by Rashba-Dresselhaus Spin-Orbit Coupling in an Anisotropic Two-Dimensional Perovskite Microcavity.

Nano Lett

September 2025

Key Laboratory of Micro & Nano Photonic Structures, Department of Optical Science and Engineering, College of Future Information Technology, Fudan University, Shanghai 200433, China.

The separation and propagation of spin are vital to understanding spin-orbit coupling (SOC) in quantum systems. Exciton-polaritons, hybrid light-matter quasiparticles, offer a promising platform for investigating SOC in quantum fluids. By utilization of the optical anisotropy of materials, Rashba-Dresselhaus SOC (RDSOC) can be generated, enabling robust polariton spin transport.

View Article and Find Full Text PDF

Gravitational and Magnetic Bi-Field Assisted One-Step Quick Fabrication of Implantable Micro Zn-Ion Hybrid Supercapacitor.

Adv Healthc Mater

September 2025

Energy Storage Institute of Lanzhou University of Technology, School of Materials Science and Engineering, State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou, 730050, China.

The rapid advancement of implantable medical electronic devices has spurred substantial research into implantable energy storage systems. However, the presence of multiple film resistors in traditional sandwich structures impedes further enhancements in the electrochemical performance of supercapacitors and may result in contact failures between electrodes and separators or catastrophic short-circuit failures during tissue deformation. This study introduces a novel approach for fabricating all-in-one Zn-ion hybrid supercapacitors, which effectively mitigates performance degradation and safety concerns arising from interfacial issues.

View Article and Find Full Text PDF

This study reports the enhanced photoelectrochemical (PEC) performance of TiO/α-FeO heterostructure films fabricated a sequential aerosol-assisted chemical vapour deposition (AACVD) of hematite at 450 °C, followed by atmospheric pressure CVD (APCVD) of anatase TiO with controlled thickness. Structural analyses (XRD, Raman, XPS) confirmed phase purity and oxidation states, while UV-vis spectroscopy revealed a narrowed bandgap and extended visible light absorption for the heterostructures compared to pristine films. The optimized TiO/α-FeO (8 min) photoanode achieved a photocurrent density of 1.

View Article and Find Full Text PDF