Quantum spin driven Yu-Shiba-Rusinov multiplets and fermion-parity-preserving phase transition in KC.

Sci Bull (Beijing)

State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China; Frontier Science Center for Quantum Information, Beijing 100084, China. Electronic address:

Published: May 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Magnetic impurities in superconductors are of increasing interest due to emergent Yu-Shiba-Rusinov (YSR) states and Majorana zero modes for fault-tolerant quantum computation. However, a direct relationship between the YSR multiple states and magnetic anisotropy splitting of quantum impurity spins remains poorly characterized. By using scanning tunneling microscopy, we systematically resolve individual transition-metal (Fe, Cr, and Ni) impurities induced YSR multiplets as well as their Zeeman effects in the KC superconductor. The YSR multiplets show identical d orbital-like wave functions that are symmetry-mismatched to the threefold KC(1 1 1) host surface, breaking point-group symmetries of the spatial distribution of YSR bound states in real space. Remarkably, we identify an unprecedented fermion-parity-preserving quantum phase transition between ground states with opposite signs of the uniaxial magnetic anisotropy that can be manipulated by an external magnetic field. These findings can be readily understood in terms of anisotropy splitting of quantum impurity spins, and thus elucidate the intricate interplay between the magnetic anisotropy and YSR multiplets.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scib.2024.03.052DOI Listing

Publication Analysis

Top Keywords

magnetic anisotropy
12
ysr multiplets
12
phase transition
8
anisotropy splitting
8
splitting quantum
8
quantum impurity
8
impurity spins
8
ysr
6
quantum
5
magnetic
5

Similar Publications

Progressive lifespan modifications in the corpus callosum following a single concussion in juvenile male mice monitored by diffusion MRI.

Exp Neurol

September 2025

CNRS UMR 5536 RMSB, University of Bordeaux, Bordeaux, France; Basic Science Department, Loma Linda University School of Medicine, Loma Linda, CA, USA; CNRS UMR 7372 CEBC, La Rochelle University, Villiers-en-Bois, France.

Introduction: The vulnerability of white matter (WM) in acute and chronic moderate-severe traumatic brain injury (TBI) has been established. In concussion syndromes, including preclinical rodent models, lacking are comprehensive longitudinal studies spanning the mouse lifespan. We previously reported early WM modifications using clinically relevant neuroimaging and histological measures in a model of juvenile concussion at one month post injury (mpi) who then exhibited cognitive deficits at 12mpi.

View Article and Find Full Text PDF

Most individuals with moderate-to-severe diffuse axonal injury (DAI) have impaired verbal fluency (VF) capacity. Still, the relationship between brain and VF recovery post-DAI has remained mostly unknown. The aim was to assess brain changes in 13 cortical thickness regions of interest (ROIs), fractional anisotropy (FA), and free water (FW) in three language-related tracts; the VF performance at 6 and 12 months after the DAI; and whether brain changes from 3 to 6 months predict VF performance from 6- to 12-month post-DAI.

View Article and Find Full Text PDF

Clear cell renal cell carcinoma (ccRCC) is a malignant tumor, originating from the renal epithelium, and accounts for ~85% of RCC cases. The present study aimed to validate the efficacy of an MRI deep learning (DL) model to preoperatively predict the pathological grading of ccRCC. Therefore, a DL algorithm was constructed and trained using diffusion weighted imaging (DWI) and diffusion kurtosis imaging (DKI) sequence images.

View Article and Find Full Text PDF

Objectives: To synthesize a temperature-responsive multimodal motion microrobot (MMMR) using temperature and magnetic field-assisted microfluidic droplet technology to achieve targeted drug delivery and controlled drug release.

Methods: Microfluidic droplet technology was utilized to synthesize the MMMR by mixing gelatin with magnetic microparticles. The microrobot possessed a magnetic anisotropy structure to allow its navigation and targeted drug release by controlling the temperature field and magnetic field.

View Article and Find Full Text PDF

Iron-the most abundant magnetic brain substance-is essential for many biological processes, including dopamine and myelin synthesis. Quantitative susceptibility mapping (QSM) MRI has recently linked altered subcortical magnetic susceptibility (χ) to schizophrenia. Since χ is increased by iron and decreased by myelin, abnormal levels of either could underlie these QSM differences.

View Article and Find Full Text PDF