98%
921
2 minutes
20
Here we present a novel strategy for the synthesis of enantiomerically enriched tetrahydronaphthalen-1-ols. The reaction proceeds via an alkylation (via hydrogen borrowing) and ammonium formate-mediated asymmetric transfer hydrogenation (via dynamic kinetic resolution), giving alkylated tetralols in high yields and good enantio- and diastereoselectivity across a diverse range of both alcohol and tetralone substrates. Additionally, these products were successfully derivatized to several complex molecules, demonstrating the utility of the tetrahydronaphthalen-1-ol.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.orglett.4c00718 | DOI Listing |
IEEE Nanotechnol Mater Devices Conf
October 2024
PacTech USA Inc., Santa Clara, CA 95050 USA.
Nanoparticles exhibit optical and infrared sensitivity useful in optoelectronics, spectroscopy, and sensing. Capacitative and conductive coupling induces dipolar and charge transfer plasmon modes in nanoscale dimers. Optical and infrared activity of these hybridized modes are exquisitely sensitive to geometric features of the nanoscale dimer.
View Article and Find Full Text PDFOrg Biomol Chem
September 2025
School of Chemistry & Environment; Yunnan Key Laboratory of Chiral Functional Substance Research and Application, Yunnan Minzu University, Yuehua Street, Kun-ming 650504, China.
The present study utilizes density functional theory (DFT) to systematically investigate the effect of a ligand on the mechanism of nickel-catalyzed asymmetric hydrogenation of cyclic -sulfonyl imines, employing alcohol protons as the hydrogen source. By comparing the free energies of three catalytic pathways involving various coordinated nickel complexes with different ligands, we identify that the enantio-determining step is the nickel-hydride transfer. Notably, the reaction pathway initiated by the Ni(0) species through oxidative addition of alcohol is determined to be the most favorable.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.
By the strategic integration of squaramide with amino acid derivatives, a type of modular H-bonding catalyst for the enantioselective hydrogen atom transfer (HAT) process was developed. With these disulfides, a photoinduced asymmetric anti-Markovnikov hydrophosphinylation was achieved, providing a series of chiral -hydroxyphosphine oxides with reasonable to high enantioselectivity. Mechanism studies revealed the critical role of the H-bonding interactions between the squaramide scaffold and radical intermediates in governing the enantioselectivity and catalytic reactivity.
View Article and Find Full Text PDFChemistry
September 2025
ICGM, Univ, Montpellier, ENSCM, CNRS, Montpellier, France.
A novel Ru-catalyzed asymmetric transfer hydrogenation (ATH) strategy has been developed for the efficient synthesis of valuable chiral α-aminophosphonates from readily available α-iminophosphonates. This method enables the conversion of both acyclic and cyclic substrates in high yields (up to 97%) and excellent enantioselectivities (up to >99:1), providing a practical entry to phosphorus-containing chiral amines. Notably, this is the first reported application of ATH to α-iminophosphonates, offering a robust and operationally convenient alternative to conventional asymmetric hydrogenation (AH) approaches.
View Article and Find Full Text PDFOrg Lett
September 2025
Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Wushan Rd-381, Guangzhou 510641, P.R. China.
Herein, we report the first regio- and enantioselective synthesis of tetrahydropyrido[2,3-]pyrazines using a chiral iridacycle catalyst. Pyridyl diamines and diketones undergo sequential annulation and asymmetric transfer hydrogenation of the generated pyrido[2,3-]pyrazine intermediates. This method provides diverse fused N-heterocycles in high yields (up to 95%) and enantioselectivity (98.
View Article and Find Full Text PDF