Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This study pioneers a chemical sensor based on surfactant-free aerosol-synthesized single-walled carbon nanotube (SWCNT) films for detecting nitrogen dioxide (NO). Unlike conventional CNTs, the SWCNTs used in this study exhibit one of the highest surface-to-volume ratios. They show minimal bundling without the need for surfactants and have the lowest number of defects among reported CNTs. Furthermore, the dry-transferrable and facile one-step lamination results in promising industrial viability. When applied to devices, the sensor shows excellent sensitivity (41.6% at 500 ppb), rapid response/recovery time (14.2/120.8 s), a remarkably low limit of detection (below ≈0.161 ppb), minimal noise, repeatability for more than 50 cycles without fluctuation, and long-term stability for longer than 6 months. This is the best performance reported for a pure CNT-based sensor. In addition, the aerosol SWCNTs demonstrate consistent gas-sensing performance even after 5000 bending cycles, indicating their suitability for wearable applications. Based on experimental and theoretical analyses, the proposed aerosol CNTs are expected to overcome the limitations associated with conventional CNT-based sensors, thereby offering a promising avenue for various sensor applications.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202313830DOI Listing

Publication Analysis

Top Keywords

single-walled carbon
8
aerosol-synthesized surfactant-free
4
surfactant-free single-walled
4
carbon nanotube-based
4
nanotube-based sensors
4
sensors unprecedentedly
4
unprecedentedly high
4
high sensitivity
4
sensitivity fast
4
fast recovery
4

Similar Publications

The long-term optical performance and stability of single-walled carbon nanotubes (SWCNTs) functionalized with single-stranded DNA are critical for their application in near-infrared (NIR) fluorescence biological sensing and imaging. However, the aggregation of such DNA-SWCNTs during storage presents a significant challenge. Here, we explored the use of lyophilization combined with various cryoprotectants to enhance the long-term stability and reconstitution of DNA-SWCNTs at room temperature.

View Article and Find Full Text PDF

This study presents the experimental demonstration of metallic NbS-based one-dimensional van der Waals heterostructures using a modified NaCl-assisted chemical vapor deposition strategy. By employing a ″remote salt″ strategy, we realized precise control of the NaCl supply, enabling the growth of high-quality coaxial NbS nanotubes on single-walled carbon nanotube-boron nitride nanotube (SWCNT-BNNT) templates. Using this remote salt strategy, the morphologies of as-synthesized NbS could be tuned from 1D nanotubes to suspended 2D flakes.

View Article and Find Full Text PDF

Design of passive coding RFID sensor tags for smart agriculture based on RGO-TiO-SWCNT electrode.

Mikrochim Acta

September 2025

College of Communications and Electronics Engineering, Qiqihar University, Qiqihar, Heilongjiang, 161006, China.

A passive coding monopod antenna sensor (RFID) tag based on a composite material of titanium dioxide (TiO)/single-walled carbon nanotubes (SWCNT)/reduced graphene oxide (RGO) is studied. This sensor can be used to precisely measure light intensity and carbon dioxide concentration. Under the illumination of light with an intensity ranging from 4 to 18.

View Article and Find Full Text PDF

Nanoscale Decoupling of Carrier-Phonon Transport in Carbon Nanotube-Halide Perovskite Heterostructures.

Adv Sci (Weinh)

September 2025

Material Science and Engineering Program (MSE), Physical Sciences and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.

In conventional semiconductors, electrical and thermal conductivity are typically coupled, posing a challenge in optimizing both simultaneously. Overcoming this inherent trade-off enables strategies for advancing electronic applications. Herein, a strategy is demonstrated to decouple electrical and thermal conductivity trade-off by creating heterostructures of highly conductive single-walled carbon nanotubes (SWCNTs) coated with low conductivity hybrid perovskites.

View Article and Find Full Text PDF

Oriented synergistic assembly of one-dimensional Te nanowires/SWCNTs for high-performance thermoelectric aerogels.

J Colloid Interface Sci

August 2025

State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China; School of Materials Science and Engineering, Shanghai Dianji University, Shanghai 201306, PR China. Electronic address:

The decoupling of thermoelectric performance parameters to coordinately optimize power factor (PF) and figure of merit (ZT) remains a critical challenge. Aerogels are valued for their low thermal conductivity and light weight; however, the lower electrical properties also lead to poor ZT values that affect their practical use. Herein, we implement a directional assembly strategy integrating Te nanowires (Te NWs) with single-walled carbon nanotubes (SWCNTs) to construct a three-dimensional interwoven network.

View Article and Find Full Text PDF