98%
921
2 minutes
20
Introduction: Primary human blood cells represent an essential model system to study physiology and disease. However, human blood is a limited resource. During healthy donor plateletpheresis, the leukoreduction system chamber (LRSC) reduces the leukocyte amount within the subsequent platelet concentrate through saturated, fluidized, particle bed filtration technology. Normally, the LRSC is discarded after apheresis is completed. Compared to peripheral blood, LRSC yields 10-fold mononuclear cell concentration.
Methods: To explore if those retained leukocytes are attractive for research purposes, we isolated CD3+ T cells from the usually discarded LRSCs via density gradient centrifugation in order to manufacture CD19-targeted chimeric antigen receptor (CAR) T cells.
Results: Immunophenotypic characterization revealed viable and normal CD4+ and CD8+ T-cell populations within LRSC, with low CD19+ B cell counts. Magnetic-activated cell sorting (MACS) purified CD3+ T cells were transduced with CD19 CAR-encoding lentiviral self-inactivating vectors using concentrated viral supernatants. Robust CD19 CAR cell surface expression on transduced T cells was confirmed by flow cytometry. CD19 CAR T cells were further enriched through anti-CAR MACS, yielding 80% CAR+ T-cell populations. In vitro CAR T cell expansion to clinically relevant numbers was achieved. To prove functionality, CAR T cells were co-incubated with the human CD19+ B cell precursor leukemia cell line Nalm6. Compared to unmodified T cells, CD19 CAR T cells effectively eradicated Nalm6 cells.
Conclusion: Taken together, we can show that lymphocytes isolated from LRSCs of plateletpheresis sets can be efficiently used for the generation of functional CAR T cells for experimental purposes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10996058 | PMC |
http://dx.doi.org/10.1159/000532130 | DOI Listing |
Best Pract Res Clin Haematol
September 2025
Department of Hematology, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, China. Electronic address:
Multiple myeloma (MM) is a malignant disease in which clonal plasma cells proliferate abnormally. In patients with MM, the number and function of NK cells are suppressed, resulting in reduced immune surveillance and clearance of myeloma cells. Restoring or enhancing the killing effect of NK cells on myeloma cells is an important strategy for MM immunotherapy.
View Article and Find Full Text PDFBest Pract Res Clin Haematol
September 2025
Department of Personalized Medicine and Rare Diseases, Medfuture Institute for Biomedical Research - Department of Hematology, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania; Department of Hematology, Ion Chiricuta Cancer Center, Cluj Napoca, Romania. Electronic address:
Plasma cell myeloma (multiple myeloma) is a blood cancer characterized by the clonal proliferation of plasma cells in the bone marrow. Treatment strategies evolve year by year, new drugs getting Food and Drug Administration (FDA)-approved each year. Chimeric antigen receptor (CAR) therapies are an advanced form of immunotherapy that engineer T cells to recognize and destroy cancer cells.
View Article and Find Full Text PDFBest Pract Res Clin Haematol
September 2025
Department of Personalized Medicine and Rare Diseases, Medfuture Institute for Biomedical Research - Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania; Department of Hematology, Ion Chiricuta Cancer Center, Cluj Napoca, Romania. Electronic address: c
Lymphomas are a group of malignant proliferations of B, T or NK-lymphoid cells at different stages of maturation. While they primarily occur in lymph nodes or lymphatic tissues, they can also involve bone marrow, blood, or other organs. Despite advances in treatment, many patients experience relapse, or develop refractory disease, prompting the development of new therapies.
View Article and Find Full Text PDFRev Med Interne
September 2025
Aix-Marseille Univ, C2VN, Inserm, INRAE, centre de néphrologie et transplantation rénale, CHU Conception, AP-HM, Marseille, France.
J Theor Biol
September 2025
Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China. Electronic address:
Chimeric antigen receptor (CAR)-macrophage therapy is a promising approach for tumour treatment due to antigen-specific phagocytosis and tumour clearance. However, the precise impact of tumour burden, dose and dosing regimens on therapeutic outcomes remains poorly understood. We developed ordinary differential equation (ODE) mathematical modelling and utilised parameter inference to analyse in vitro FACS-based phagocytosis assay data testing CD19-positive Raji tumour cell against CAR-macrophage, and revealed that phagocytosing efficiency of CAR-macrophage increases but saturates as both Raji cell and CAR-macrophage concentrations increase.
View Article and Find Full Text PDF