98%
921
2 minutes
20
Introduction: Naked DNA vaccination could be a powerful and safe strategy to mount antigen-specific cellular immunity. We designed a phase I clinical trial to investigate the toxicity of naked DNA vaccines encoding CD8+ T-cell epitope from tumor-associated antigen MART-1 in patients with advanced melanoma.
Methods: This dose escalating phase Ia clinical trial investigates the toxicity and immunological response upon naked DNA vaccines encoding a CD8+ T-cell epitope from the tumor-associated antigen MART-1, genetically linked to the gene encoding domain 1 of subunit-tetanus toxin fragment C in patients with advanced melanoma (inoperable stage IIIC-IV, AJCC 7th edition). The vaccine was administrated via intradermal application using a permanent make-up or tattoo device. Safety was monitored according to CTCAE v.3.0 and skin biopsies and blood samples were obtained for immunologic monitoring.
Results: Nine pretreated, HLA-A*0201-positive patients with advanced melanoma expressing MART-1 and MHC class I, with a good performance status, and adequate organ function, were included. With a median follow-up of 5.9 months, DNA vaccination was safe, without treatment-related deaths. Common treatment-emergent adverse events of any grade were dermatologic reactions at the vaccination site (100%) and pain (56%). One patient experienced grade 4 toxicity, most likely related to tumor progression. One patient (11%) achieved stable disease, lasting 353 days. Immune analysis showed no increase in vaccine-induced T cell response in peripheral blood of 5 patients, but did show a MART-1 specific CD8+ T cell response at the tattoo administration site. The maximum dose administered was 2 mg due to lack of clinical activity.
Conclusion: We showed that the developed DNA vaccine, applied using a novel intradermal application strategy, can be administered safely. Further research with improved vaccine formats is required to show possible clinical benefit of DNA vaccination.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11323828 | PMC |
http://dx.doi.org/10.1159/000537896 | DOI Listing |
Anal Chem
September 2025
College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
A series of molecular logic gates with multiple biocomputing capabilities have been successfully fabricated by using four antibiotic residues [tetracycline (TET), chloramphenicol (CHL), kanamycin (KAN), and streptomycin (STR)] as inputs. The lateral flow strip biosensor was utilized to realize the visual and portable sensing of logic events. Four basic logic gates (OR, AND, XOR, and INHIBIT) and three cascade logic circuits (OR-INHIBIT-AND, 3AND-OR, and XOR-INHIBIT-OR-AND) were constructed.
View Article and Find Full Text PDFAppl Environ Microbiol
September 2025
Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, Canada.
Unlabelled: Although wastewater treatment plants harbor many pathogens, traditional methods that monitor the microbial quality of surface water and wastewater have not changed since the early 1900s and often disregard the presence of other types of significant waterborne pathogens such as viruses. We used metagenomics and quantitative PCR to assess the taxonomy, functional profiling, and seasonal patterns of DNA and RNA viruses, including the virome distribution in aquatic environments receiving wastewater discharges. Environmental water samples were collected at 11 locations in Winnipeg, Manitoba, along the Red and Assiniboine rivers during the Spring, Summer, and Fall 2021.
View Article and Find Full Text PDFAnal Chem
September 2025
School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
Point-of-care (POC) detection of prostate-specific antigen (PSA) is critical for the early screening and monitoring of prostate cancer (PCa), which facilitates timely intervention and personalized treatment. However, existing POC platforms suffer from inadequate detection sensitivities, susceptibility to matrix interference, and complex sample pretreatment. To address these issues, we proposed a naked-eye and colorimetric sensing platform based on magnetic nanozyme (FeO@ZIF-67@Pt) integrated with a tetrahedral DNA framework (TDF) and alkaline phosphatase (ALP)-triggered hydrolysis reaction for PSA detection with superior sensing performances.
View Article and Find Full Text PDFAnalyst
September 2025
Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Korea.
Herein, we introduce a LEGO®-inspired molecular diagnostic microdevice fully integrated with DNA extraction, loop-mediated isothermal amplification (LAMP), and colorimetric detection functionalities for rapid detection of antibacterial resistance in a pipette-free manner. The microdevice system is composed of a ready-to-use microdevice containing all necessary reagents and stamps that offer sample-to-answer diagnosis in a pipette-free manner. In particular, antimicrobial resistance was analyzed through LAMP at a significantly reduced temperature of approximately 40 °C, combined with DNA extraction and detection, which were performed at room temperature (RT).
View Article and Find Full Text PDFInt J Mol Sci
August 2025
V.N. Orekhovich Institute of Biomedical Chemistry, 10 Pogodinskaya St., 119121 Moscow, Russia.
A straightforward approach is suggested to selectively recognize specific products of loop-mediated isothermal amplification (LAMP) with the Cas12a nuclease without a need for a protospacer adjacent motif (PAM) in the sequence of LAMP amplicons (LAMPlicons). This strategy is based on the presence of single-stranded DNA loops in LAMPlicons and the ability of Cas12a to be -activated via the binding of guide RNA (gRNA) to single-stranded DNA in the absence of PAM. The approach feasibility is demonstrated on species-multiple bacterial plant pathogens that cause harmful diseases in agriculturally important plants.
View Article and Find Full Text PDF