98%
921
2 minutes
20
Background: Esophageal squamous cell carcinoma (ESCC) is a genetically heterogeneous disease with poor clinical outcomes. Identification of biomarkers linked to DNA replication stress may enable improved prognostic risk stratification and guide therapeutic decision making. We performed integrated single-cell RNA sequencing and computational analyses to define the molecular determinants and subtypes underlying ESCC heterogeneity.
Methods: Single-cell RNA sequencing was performed on ESCC samples and analyzed using Seurat. Differential gene expression analysis was used to identify esophageal cell phenotypes. DNA replication stress-related genes were intersected with single-cell differential expression data to identify potential prognostic genes, which were used to generate a DNA replication stress (DRS) score. This score and associated genes were evaluated in survival analysis. Putative prognostic biomarkers were evaluated by Cox regression and consensus clustering. Mendelian randomization analyses assessed the causal role of PRKCB.
Results: High DRS score associated with poor survival. Four genes (CDKN2A, NUP155, PPP2R2A, PRKCB) displayed prognostic utility. Three molecular subtypes were identified with discrete survival and immune properties. A 12-gene signature displayed robust prognostic performance. PRKCB was overexpressed in ESCC, while PRKCB knockdown reduced ESCC cell migration.
Conclusions: This integrated single-cell sequencing analysis provides new insights into the molecular heterogeneity and prognostic determinants underlying ESCC. The findings identify potential prognostic biomarkers and a gene expression signature that may enable improved patient risk stratification in ESCC. Experimental validation of the role of PRKCB substantiates the potential clinical utility of our results.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11004200 | PMC |
http://dx.doi.org/10.1016/j.tranon.2024.101948 | DOI Listing |
J Cancer Res Clin Oncol
September 2025
Division of Gastroenterology, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan.
Purpose: Next-generation sequencing (NGS) has revolutionized cancer treatment by enabling comprehensive cancer genomic profiling (CGP) to guide genotype-directed therapies. While several prospective trials have demonstrated varying outcomes with CGP in patients with advanced solid tumors, its clinical utility in colorectal cancer (CRC) remains to be evaluated.
Methods: We conducted a prospective observational study of CGP in our hospital between September 2019 and March 2024.
Cancer Immunol Immunother
September 2025
Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
Whole blood (WB) transcriptomics offers a minimal-invasive method to assess patients' immune system. This study aimed to identify transcriptional patterns in WB associated with clinical outcomes in patients treated with immune checkpoint inhibitors (ICIs). We performed RNA-sequencing on pre-treatment WB samples from 145 patients with advanced cancer.
View Article and Find Full Text PDFLeukemia
September 2025
Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA.
Pediatric acute myeloid leukemia (pAML) is a heterogeneous malignancy driven by diverse cytogenetic mutations. While identification of cytogenetic lesions improved risk stratification, prognostication remains inadequate with 30% of standard-risk patients experiencing relapse within 5 years. To deeply characterize pAML heterogeneity and identify poor outcome-associated blast cell profiles, we performed an analysis on 708,285 cells from 164 bone marrow biopsies of 95 patients and 11 healthy controls.
View Article and Find Full Text PDFCancer Sci
September 2025
Section of Oncopathology and Morphological Pathology, Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan.
Low-density lipoprotein receptor-related protein 11 (LRP11) is reported to be overexpressed in various cancers; however, its functional role in lung adenocarcinoma remains poorly understood. This study aimed to elucidate the tumor-promoting function of LRP11 in lung adenocarcinoma. We assessed the expression and function of LRP11 in lung adenocarcinoma cell lines through both silencing and overexpression experiments.
View Article and Find Full Text PDFTransl Oncol
September 2025
Pharmacy of Jiangxi cancer hospital&institute, Nanchang, Jiangxi, China. Electronic address:
Background: Renal cell carcinoma (RCC) is a common malignant tumor with metabolic reprogramming and immune evasion features. δ-Aminolevulinic acid dehydratase (ALAD), a key enzyme in heme biosynthesis, has been implicated in cancer progression and treatment outcomes, but its role in RCC remains unclear.
Methods: This study integrated multi-omics datasets from TCGA, CPTAC, and GEO to analyze ALAD's expression, prognostic value, and functional implications in RCC.