98%
921
2 minutes
20
Instant dark tea (IDT), prepared by liquid-state fermentation using Aspergillus niger, is known for its high theabrownins content and lipid-lowering effect. To explore the impact of fungal fermentation on IDT compositions and its pancreatic lipase inhibitory ability (PLIA), untargeted and targeted metabolomic analysis were applied to track the changes of metabolites over a 9-day fermentation period, and correlation analysis was then conducted between metabolites and PLIA of IDT. There were 54 differential metabolites exhibited significant changes from day 3 to day 5 of fermentation. The concentrations of theabrownins and caffeine increased during fermentation, while phenols and free amino acids decreased. The PLIA of IDT samples significantly increased from day 5 to day 9 of fermentation. Theabrownins not only positively correlated with the PLIA but also exhibited a high inhibition rate. These findings provide a theoretical basis to optimize the production of IDT as functional food ingredient.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2024.139136 | DOI Listing |
J Fish Dis
September 2025
Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong
Vibrio infections cause enteritis in grouper fish, leading to high mortality and stunted growth, which is a major challenge for aquaculture. Oligochitosans, marine prebiotics with bioactive properties, have proven their potential for growth promotion and immune regulation. However, the impacts of Vibrio harveyi on the gut microbiome of grouper fish and the potential of oligochitosans to modulate these effects remain poorly understood.
View Article and Find Full Text PDFDiabetes Metab J
September 2025
Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
Background: Diabetic foot ulcer (DFU) represents a challenging complication of diabetes mellitus, characterized by slow healing processes. Protein kinase C delta (PKCδ) has been identified as a significant factor in the pathogenesis of various diabetic complications, including DFU. However, the precise underlying mechanisms remain to be fully elucidated.
View Article and Find Full Text PDFAPMIS
September 2025
Department of Molecular Biology and Genetics, Tokat Gaziosmanpasa University, Tokat, Türkiye.
Pyroptosis is a lytic and pro-inflammatory regulated cell death pathway mediated by pores formed by the oligomerization of gasdermin proteins on cellular membranes. Different pro-inflammatory molecules such as interleukin-18 are released from these pores, promoting inflammation. Pyroptotic cell death has been implicated in many pathological conditions, including cancer and liver diseases.
View Article and Find Full Text PDFJ Neurochem
September 2025
Carl-Ludwig-Institute of Physiology, Faculty of Medicine, Leipzig University, Leipzig, Germany.
Recent evidence indicates that the concentration of ATP remains stable during neuronal activity due to activity-dependent ATP production. However, the mechanisms of activity-dependent ATP production remain controversial. To stabilize the ATP concentration, feedforward mechanisms, which may rely on calcium or the sodium-potassium pump, do not require changes in the ATP and ADP concentrations.
View Article and Find Full Text PDFCurr Drug Metab
September 2025
First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China.
Background: Tetrandrine (TET) demonstrates therapeutic potential for hypoxic pulmonary hypertension (HPH); however, its precise pharmacological mechanisms remain unclear. In this study, we aimed to investigate the effects of TET on pulmonary vascular remodeling (PVR) in HPH and elucidate the molecular pathways through which TET ameliorates HPH.
Methods: We established a rat model of HPH and evaluated the therapeutic effects of TET by measuring hemodynamic parameters, assessing right ventricular hypertrophy, and analyzing pathological changes in lung tissue.