98%
921
2 minutes
20
Extreme atmospheric-marine events, known as medicanes (short for "Mediterranean hurricanes"), have affected the Mediterranean basin in recent years, resulting in extensive coastal flooding and storm surges, and have occasionally been responsible for several casualties. Considering that the development mechanism of these events is similar to tropical cyclones, it is plausible that these phenomena are strongly affected by sea surface temperatures (SSTs) during their development period (winter and autumn seasons). In this study, we compared satellite data and the numerical reanalysis of SSTs from 1969 to 2023 with in situ data from dataloggers installed at different depths off the coast of southeastern Sicily as well as from data available on Argo floats on the Mediterranean basin. A spectral analysis was performed using a continuous wavelet transform (CWT) for each SST time series to highlight the changes in SSTs prior to the occurrence of Mediterranean Hurricanes as well as the energy content of the various frequencies of the SST signal. The results revealed that decreases in SST occurred prior to the formation of each Mediterranean hurricane, and that this thermal drop phenomenon was not observed in intense extra-tropical systems. The spectral analyses revealed that high CWT coefficients representing high SST energy contents were observed before the occurrence of a Mediterranean hurricane. This information may provide a useful fingerprint for distinguishing Mediterranean hurricanes from common seasonal storms at the onset of these events.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10997583 | PMC |
http://dx.doi.org/10.1038/s41598-024-58335-w | DOI Listing |
Mar Environ Res
February 2025
Seascape Ecology Lab (SEL), DiSTAV, Department of Earth, Environment and Life Sciences, University of Genoa, Corso Europa 26, 16132, Genova, Italy; NBFC (National Biodiversity Future Centre), Piazza Marina 61, 90133, Palermo, Italy.
Extreme events influence ecosystem dynamics, but their effects on coastal marine habitats are often poorly perceived compared to their terrestrial counterparts. The detailed study of changes in benthic communities related to these phenomena is becoming urgent, due to the increasing intensity and frequency of hurricanes recorded in recent decades. Slow-growing benthic sessile organisms are particularly vulnerable to mechanical impacts, especially the large long-lived species with branched morphology that structure Mediterranean coralligenous assemblages.
View Article and Find Full Text PDFNew Phytol
October 2024
Section for Molecular Ecology and Evolution, Globe Institute, University of Copenhagen, Copenhagen K, 1350, Denmark.
Sci Rep
April 2024
Department of Earth and Geoenvironmental Sciences, University of Bari Aldo Moro, 70125, Bari, Italy.
Extreme atmospheric-marine events, known as medicanes (short for "Mediterranean hurricanes"), have affected the Mediterranean basin in recent years, resulting in extensive coastal flooding and storm surges, and have occasionally been responsible for several casualties. Considering that the development mechanism of these events is similar to tropical cyclones, it is plausible that these phenomena are strongly affected by sea surface temperatures (SSTs) during their development period (winter and autumn seasons). In this study, we compared satellite data and the numerical reanalysis of SSTs from 1969 to 2023 with in situ data from dataloggers installed at different depths off the coast of southeastern Sicily as well as from data available on Argo floats on the Mediterranean basin.
View Article and Find Full Text PDFConserv Biol
August 2024
Mediterranean Institute for Agriculture, Environment and Development & CHANGE - Global Change and Sustainability Institute, Universidade de Évora, Évora, Portugal.
Central America and the Caribbean are regularly battered by megadroughts, heavy rainfall, heat waves, and tropical cyclones. Although 21st-century climate change is expected to increase the frequency, intensity, and duration of these extreme weather events (EWEs), their incidence in regional protected areas (PAs) remains poorly explored. We examined historical and projected EWEs across the region based on 32 metrics that describe distinct dimensions (i.
View Article and Find Full Text PDFMar Pollut Bull
January 2024
Aix Marseille Univ, University of Toulon, CNRS, IRD, MIO UM 110, Marseille 13288, France. Electronic address:
This study aims at characterizing the hydrodynamic context and transport patterns that prevailed during the MERITE-HIPPOCAMPE cruise to assist in the interpretation of in-situ observations. The main physical attributes and structures (mesoscale eddies as well as fine-scale fronts and filaments) are analyzed based on various physical diagnostics. They were computed from satellite data and data-assimilative model outputs to describe ocean dynamics.
View Article and Find Full Text PDF