98%
921
2 minutes
20
Esophageal squamous cell carcinoma (ESCC) is a deadly malignancy with notable metabolic reprogramming, yet the pivotal metabolic feature driving ESCC progression remains elusive. Here, we show that methionine cycle exhibits robust activation in ESCC and is reversely associated with patient survival. ESCC cells readily harness exogenous methionine to generate S-adenosyl-methionine (SAM), thus promoting cell proliferation. Mechanistically, methionine augments METTL3-mediated RNA mA methylation through SAM and revises gene expression. Integrative omics analysis highlights the potent influence of methionine/SAM on NR4A2 expression in a tumor-specific manner, mediated by the IGF2BP2-dependent stabilization of methylated NR4A2 mRNA. We demonstrate that NR4A2 facilitates ESCC growth and negatively impacts patient survival. We further identify celecoxib as an effective inhibitor of NR4A2, offering promise as a new anti-ESCC agent. In summary, our findings underscore the active methionine cycle as a critical metabolic characteristic in ESCC, and pinpoint NR4A2 as a novel methionine-responsive oncogene, thereby presenting a compelling target potentially superior to methionine restriction.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11094133 | PMC |
http://dx.doi.org/10.1038/s41418-024-01285-7 | DOI Listing |
Front Immunol
September 2025
Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan.
Immune cell metabolism is essential for regulating immune responses, including activation, differentiation, and function. Through glycolysis and oxidative phosphorylation (OXPHOS), metabolism supplies energy and key intermediates for cell growth and proliferation. Importantly, some metabolites generated during these processes act as signaling molecules that influence immune activity.
View Article and Find Full Text PDFLife Sci Alliance
November 2025
Immunoregulation Research Group, Max Planck Institute of Biochemistry, Martinsried, Germany
Amino acid (AA) detection is fundamental for cellular function, balancing translation demands, biochemical pathways, and signaling networks. Although the GCN2 and mTORC1 pathways are known to regulate AA sensing, the global cellular response to AA deprivation remains poorly understood, particularly in non-transformed cells, which may exhibit distinct adaptive strategies compared with cancer cells. Here, we employed murine pluripotent embryonic stem (ES) cells as a model system to dissect responses to AA stress.
View Article and Find Full Text PDFAppl Environ Microbiol
September 2025
MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao, China.
Unlabelled: Dimethylsulfoniopropionate (DMSP) is one of the most abundant organosulfur molecules on Earth. It possesses various physiological functions in microorganisms and plays key roles in the global climate regulation. BurB, a SET (Suppressor of variegation, Enhancer of zeste and Trithorax) domain-containing enzyme identified from , initiates DMSP synthesis by methylating methionine (Met) to -methyl-methionine (SMM), with -adenosyl methionine (SAM) as a methyl donor.
View Article and Find Full Text PDFFront Psychiatry
August 2025
Faculty of Medicine, Universidade Federal Fluminense, Niterói, Brazil.
B complex vitamins, a group of eight water-soluble vitamins, play interconnected roles in maintaining nervous system health. Thiamine (B1), riboflavin (B2), and niacin (B3) are essential as co-enzymes in numerous metabolic reactions related to energy production. Thiamine is involved in the Krebs cycle, riboflavin in the electron transport chain, and niacin plays a key role in both glycolysis and the Krebs cycle.
View Article and Find Full Text PDFCureus
July 2025
Obstetrics and Gynaecology, All India Institute of Medical Sciences, New Delhi, New Delhi, IND.
Background Nitrous oxide (N₂O) is commonly used during general anesthesia for ovum pickup during in vitro fertilization (IVF) cycles. N₂O deactivates methionine synthetase, thereby reducing the amount of thymidine available for DNA synthesis in dividing cells, which might be the reason for the low implantation rate or increased frequency of early pregnancy loss. The aim of this study is to find out the IVF outcomes after exposure to either isoflurane or a combination of isoflurane + N₂O during anesthesia administration in the oocyte retrieval procedure.
View Article and Find Full Text PDF