Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Understanding scattering insensitiveness in diffuse reflectance spectroscopy (DRS) will be useful to enhancing the spectral specificity to absorption. In DRS based on center-illuminated-area-detection (CIAD), the scattering response can saturate as the relative strength of scattering with respect to the collection size, represented by a dimensionless reduced scattering, increases over a threshold. However, the formation of saturation versus the same range of dimensionless reduced scattering may differ between a fixed reduced scattering over an increasing collection size (case 1) and an increasing reduced scattering over a fixed collection size (case 2), due to the absorption. Part III demonstrates the differences of the scattering saturation as well as the effect of absorption on it in the CIAD geometry between the two cases while assessed over the same range of the dimensionless reduced scattering. A model allows predicting the absorption-dependent levels of saturation and the corner parameters of saturation transition. When assessed for the absorption coefficient to vary over [0.001,0.01,0.1,1] , the model-predicted levels of saturation agree with MC results with ≤2.2 error in both cases. In comparison, the model-predicted corner parameters of saturation show much different agreement with MC results in the two cases, suggesting that the saturation pattern is much better formed in one than in the other. Experiments conforming to the CIAD geometry support the discrepancy of the saturating patterns between the two cases.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.506514DOI Listing

Publication Analysis

Top Keywords

reduced scattering
20
collection size
12
dimensionless reduced
12
scattering
9
saturation
8
range dimensionless
8
size case
8
ciad geometry
8
levels saturation
8
corner parameters
8

Similar Publications

Background: Underwater environments face challenges with image degradation due to light absorption and scattering, resulting in blurring, reduced contrast, and color distortion. This significantly impacts underwater exploration and environmental monitoring, necessitating advanced algorithms for effective enhancement.

Objectives: The study aims to develop an innovative underwater image enhancement algorithm that integrates physical models with deep learning to improve visual quality and surpass existing methods in performance metrics.

View Article and Find Full Text PDF

Microfibers are pollutants of increasing concern, as they accumulate in aquatic environments and pose risks to living organisms. Once released, they undergo degradation processes that reduce their size and enhance their ability to interact with biological systems. Among these processes, photodegradation is a key driver, leading to fiber fragmentation and structural shrinkage.

View Article and Find Full Text PDF

Van der Waals (vdW) layered materials have gained significant attention owing to their distinctive structure and unique properties. The weak interlayer bonding in vdW layered materials enables guest atom intercalation, allowing precise tuning of their physical and chemical properties. In this work, a ternary compound, NiInSe (x = 0-0.

View Article and Find Full Text PDF

Numerical models for problems of acoustic scattering by thin elastic shells immersed in fluids.

J Acoust Soc Am

September 2025

School of Electrical and Computer Engineering, Tel Aviv University, Tel Aviv 69978, Israel.

This paper presents relatively simple formulations of the problem of acoustic scattering by flooded and hollow elastic shells immersed in fluids, which can serve as a basis for efficient numerical models. The full rigorous formulation of the problem, which involves the Helmholtz equations for acoustic pressures in the fluids and the Navier equation for three-dimensional displacements in the elastic material, is reduced to a boundary value problem only for the Helmholtz equations with effective boundary conditions relating the boundary pressures and normal displacements on both sides of the shell. To that end, the thin elastic shell is regarded as a neighborhood of its midsurface, and the boundary values of the elastic quantities (displacements and stresses) are expressed via their expansions about the midsurface, considering the shell thickness as a small parameter.

View Article and Find Full Text PDF

Plasmonic nanoparticles boost low-current perovskite LEDs governed by photon recycling effects.

RSC Adv

September 2025

Instituto de Ciencia de Materiales de Madrid, ICMM-CSIC C/Sor Juana Inés de la Cruz, 3 Madrid 28049 Spain

Perovskite light-emitting diodes (PeLEDs) have emerged as a promising technology for next-generation display and lighting applications, thanks to their remarkable colour purity, tunability, and ease of fabrication. In this work, we explore the incorporation of plasmonic spherical nanoparticles (NPs) directly embedded into the green-emitting CsPbBr perovskite layer in a PeLED as a strategy to enhance both its optical and electrical properties. We find that plasmonic effects directly boost spontaneous emission while also influencing charge carrier recombination dynamics.

View Article and Find Full Text PDF