98%
921
2 minutes
20
Purpose: Awareness of normative values of extra orbital structures would provide useful information to interpret the radiological images better and use them for diagnostic purposes. This study aimed to reveal the average values of major extraocular structures measured on magnetic resonance images.
Methods: In this retrospective cross-sectional study, magnetic resonance (MR) images of 256 orbits of 128 patients were re-interpreted regarding the measurements of major orbital structures. Extraocular muscles, superior ophthalmic vein, and optic nerve-sheath complex were measured on orbital MR images of these patients. The data distributions were presented by box-plot analyses for each parameter, and the measurement results were analyzed regarding gender and age groups.
Results: Lateral rectus muscle thickness (LR), inferior rectus muscle thickness (IR), globe position (GP), and interzygomatic line (IZL) values were higher in the male group than in the female group (p values were < 0.001, 0.003, 0.020, and < 0.001 respectively). LR, the thickness of the superior group muscles (SUP GR), IR, superior oblique muscle thickness (SOBL), and the thickness of optic nerve-sheath complex (ON) values indicated a significant relationship between age groups. There was a significant, positive, and low-level correlation between age and LR, SUP GR, and IR values (p values were < 0.001, 0.001, and < 0.001, respectively).
Conclusion: This study provides quantitative data on normative values of orbital structures with gender and age group comparisons. Clinicians or surgeons can easily use the measured values to gather diagnostic information from the orbital region.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00276-024-03349-2 | DOI Listing |
J Phys Chem A
September 2025
Department of Inorganic and Physical Chemistry, Indian Institute of Science Bangalore, Bengaluru560012, India.
The microwave spectrum of the complex formed between 1-fluoronaphthalene and HO has been recorded using a chirped pulse Fourier transform microwave spectrometer within the frequency range of 2.0 to 8.0 GHz, with neon as the carrier gas.
View Article and Find Full Text PDFJ Craniofac Surg
September 2025
Department of Anatomy, UP University of Medical Sciences, Saifai, Etawah, UP, India.
Foramina in the orbit are well described in the literature. But the author of the present study observed an unusual foramen in the frontal process of the zygomatic bone, not reported so far, as far as the author knows. This foramen was observed in 2 skulls, in one skull bilaterally and in another skull unilaterally on the left side.
View Article and Find Full Text PDFPLoS One
September 2025
Hunan Mingxiang Aviation Technology Co., Ltd., Changsha, Hunan, China.
Flexible spacecraft possess the ability to adapt to complex environments and use energy more efficiently, offering enhanced flexibility and stability in space missions, particularly in tasks with significant external disturbances such as deep space exploration and satellite attitude control. However, vibration suppression in flexible spacecraft remains a critical challenge. This study addresses the problem of vibration suppression in flexible spacecraft systems under external disturbances and input constraints.
View Article and Find Full Text PDFACS Nano
September 2025
Department of Physics, University of Texas at Austin, Austin, Texas 78712, United States.
Atomic point defects provide an alternative tuning knob for engineering the properties and functionality of 2D transition metal dichalcogenides (TMDs). Prior to engineering point defects to tailor material properties, identification and investigation of their electronic structure is key to their implementation for device applications. The two most common atomic point defects in monolayer WS are sulfur vacancies and oxygen substituents, which have been thoroughly reported on, but their interaction has yet to be investigated.
View Article and Find Full Text PDFJ Phys Chem A
September 2025
Department of Chemistry, Tsinghua University, Beijing 100084, China.
A series of Cu-based single-atom catalysts (SACs) with asymmetric coordination were designed to accelerate lithium-sulfur (Li-S) chemistry. The electronegativity contrast from the dopant induces a localized electronic asymmetry that amplifies Jahn-Teller distortion at the Cu center. This distortion profoundly modulates the Cu 3d electronic structure and its interaction with Li-S intermediates.
View Article and Find Full Text PDF