Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Purpose: Awareness of normative values of extra orbital structures would provide useful information to interpret the radiological images better and use them for diagnostic purposes. This study aimed to reveal the average values of major extraocular structures measured on magnetic resonance images.

Methods: In this retrospective cross-sectional study, magnetic resonance (MR) images of 256 orbits of 128 patients were re-interpreted regarding the measurements of major orbital structures. Extraocular muscles, superior ophthalmic vein, and optic nerve-sheath complex were measured on orbital MR images of these patients. The data distributions were presented by box-plot analyses for each parameter, and the measurement results were analyzed regarding gender and age groups.

Results: Lateral rectus muscle thickness (LR), inferior rectus muscle thickness (IR), globe position (GP), and interzygomatic line (IZL) values were higher in the male group than in the female group (p values were < 0.001, 0.003, 0.020, and < 0.001 respectively). LR, the thickness of the superior group muscles (SUP GR), IR, superior oblique muscle thickness (SOBL), and the thickness of optic nerve-sheath complex (ON) values indicated a significant relationship between age groups. There was a significant, positive, and low-level correlation between age and LR, SUP GR, and IR values (p values were < 0.001, 0.001, and < 0.001, respectively).

Conclusion: This study provides quantitative data on normative values of orbital structures with gender and age group comparisons. Clinicians or surgeons can easily use the measured values to gather diagnostic information from the orbital region.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00276-024-03349-2DOI Listing

Publication Analysis

Top Keywords

orbital structures
12
magnetic resonance
12
resonance images
8
cross-sectional study
8
rectus muscle
8
muscle thickness
8
normative measurements
4
orbital
4
measurements orbital
4
structures
4

Similar Publications

The microwave spectrum of the complex formed between 1-fluoronaphthalene and HO has been recorded using a chirped pulse Fourier transform microwave spectrometer within the frequency range of 2.0 to 8.0 GHz, with neon as the carrier gas.

View Article and Find Full Text PDF

Foramen on Frontal Process of Zygomatic Bone.

J Craniofac Surg

September 2025

Department of Anatomy, UP University of Medical Sciences, Saifai, Etawah, UP, India.

Foramina in the orbit are well described in the literature. But the author of the present study observed an unusual foramen in the frontal process of the zygomatic bone, not reported so far, as far as the author knows. This foramen was observed in 2 skulls, in one skull bilaterally and in another skull unilaterally on the left side.

View Article and Find Full Text PDF

Active control of flexible spacecraft in orbit based on partial differential equations.

PLoS One

September 2025

Hunan Mingxiang Aviation Technology Co., Ltd., Changsha, Hunan, China.

Flexible spacecraft possess the ability to adapt to complex environments and use energy more efficiently, offering enhanced flexibility and stability in space missions, particularly in tasks with significant external disturbances such as deep space exploration and satellite attitude control. However, vibration suppression in flexible spacecraft remains a critical challenge. This study addresses the problem of vibration suppression in flexible spacecraft systems under external disturbances and input constraints.

View Article and Find Full Text PDF

Atomic point defects provide an alternative tuning knob for engineering the properties and functionality of 2D transition metal dichalcogenides (TMDs). Prior to engineering point defects to tailor material properties, identification and investigation of their electronic structure is key to their implementation for device applications. The two most common atomic point defects in monolayer WS are sulfur vacancies and oxygen substituents, which have been thoroughly reported on, but their interaction has yet to be investigated.

View Article and Find Full Text PDF

A series of Cu-based single-atom catalysts (SACs) with asymmetric coordination were designed to accelerate lithium-sulfur (Li-S) chemistry. The electronegativity contrast from the dopant induces a localized electronic asymmetry that amplifies Jahn-Teller distortion at the Cu center. This distortion profoundly modulates the Cu 3d electronic structure and its interaction with Li-S intermediates.

View Article and Find Full Text PDF