Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

TF profiler is a method of inferring transcription factor regulatory activity, i.e. when a TF is present and actively regulating transcription, directly directly from nascent sequencing assays such as PRO-seq and GRO-seq. Transcription factors orchestrate transcription and play a critical role in cellular maintenance, identity and response to external stimuli. While ChIP assays have measured DNA localization, they fall short of identifying when and where transcription factors are actively regulating transcription. Our method, on the other hand, uses RNA polymerase activity to infer TF activity across hundreds of data sets and transcription factors. Based on these classifications we identify three distinct classes of transcription factors: ubiquitous factors that play roles in cellular homeostasis, driving basal gene programs across tissues and cell types, tissue specific factors that act almost exclusively at enhancers and are themselves regulated at transcription, and stimulus responsive TFs which are regulated post-transcriptionally but act predominantly at enhancers. TF profiler is broadly applicable, providing regulatory insights on any PRO-seq sample for any transcription factor with a known binding motif.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10980006PMC
http://dx.doi.org/10.1101/2024.03.15.585303DOI Listing

Publication Analysis

Top Keywords

transcription factors
16
transcription factor
12
transcription
11
actively regulating
8
regulating transcription
8
factors
6
factor inference
4
inference method
4
method broadly
4
broadly measures
4

Similar Publications

Background: Fish are the largest group of vertebrates. Studying the characteristics, functions, and interactions of different fish cells is important for understanding their roles in disease and evolution. However, most single cell RNA-seq studies in fish are restricted to a few specific organs, leaving a comprehensive cell landscape that aims to characterize the heterogeneity and connections among body-wide organs largely unexplored.

View Article and Find Full Text PDF

Unraveling biomolecular interactions: a comprehensive review of the electromobility shift assay.

Photochem Photobiol Sci

September 2025

Department of Genetics and Plant Breeding, C. P. College of Agriculture, S. D. Agricultural University, Sardarkrushinagar, 385506, India.

The electromobility shift assay (EMSA) is a popular and productive molecular biology tool for studying protein-nucleic acid interactions. EMSA is a technique applied to the revelation of the binding dynamics of proteins, like transcription factors, to DNA or RNA. There are ample essential phases in the technique.

View Article and Find Full Text PDF

Purpose: Lung cancer is currently the most common malignant tumor worldwide and one of the leading causes of cancer-related deaths, posing a serious threat to human health. MicroRNAs (miRNAs) are a class of endogenous non-coding small RNA molecules that regulate gene expression and are involved in various biological processes associated with lung cancer. Understanding the mechanisms of lung carcinogenesis and detecting disease biomarkers may enable early diagnosis of lung cancer.

View Article and Find Full Text PDF

Vascular sites have distinct susceptibility to atherosclerosis and aneurysm, yet the epigenomic and transcriptomic underpinning of vascular site-specific disease risk is largely unknown. Here, we performed single-cell chromatin accessibility (scATACseq) and gene expression profiling (scRNAseq) of mouse vascular tissue from three vascular sites. Through interrogation of epigenomic enhancers and gene regulatory networks, we discovered key regulatory enhancers to not only be cell type, but vascular site-specific.

View Article and Find Full Text PDF

The anti-HER2 antibody‒drug conjugate (ADC) DS-8201 presents new hope for patients with advanced HER2-positive tumors. Its clinical application, however, is hindered by serious adverse reactions and reduced efficacy following long-term treatment. In this study, we investigated the factors influencing the sensitivity of DS-8201 and developed effective combination regimens to optimize its therapeutic efficacy.

View Article and Find Full Text PDF