98%
921
2 minutes
20
During endosomal recycling, Sorting Nexin 17 (SNX17) facilitates the transport of numerous membrane cargo proteins by tethering them to the Retriever complex. Despite its importance, the mechanisms underlying this interaction have remained elusive. Here, we report the structure of the Retriever-SNX17 complex determined using cryogenic electron microscopy (cryo-EM). Our structure reveals that the C-terminal tail of SNX17 engages with a highly conserved interface between the VPS35L and VPS26C subunits of Retriever. Through comprehensive biochemical, cellular, and proteomic analyses, we demonstrate that disrupting this interface impairs the Retriever-SNX17 interaction, subsequently affecting the recycling of SNX17-dependent cargos and altering the composition of the plasma membrane proteome. Intriguingly, we find that the SNX17-binding pocket on Retriever can be utilized by other ligands that share a consensus acidic C-terminal tail motif. By showing how SNX17 is linked to Retriever, our findings uncover a fundamental mechanism underlying endosomal trafficking of critical cargo proteins and reveal a mechanism by which Retriever can engage with other regulatory factors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10980035 | PMC |
http://dx.doi.org/10.1101/2024.03.12.584676 | DOI Listing |
Curr Biol
September 2025
Department of Molecular and Cellular Biology, University of California, 1 Shields Avenue, Davis, CA 95616, USA. Electronic address:
Nuclear migration plays a fundamental role in development, requiring precise spatiotemporal control of bidirectional movement through dynein and kinesin motors. Here, we uncover a differential isoform-dependent mechanism for developmental regulation of nuclear migration directionality. The nuclear envelope Klarsicht/ANC-1/Syne homology (KASH) protein UNC-83 in Caenorhabditis elegans exists in multiple isoforms that differentially control motor activity to achieve tissue-specific nuclear positioning.
View Article and Find Full Text PDFVet Microbiol
September 2025
Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China; Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai 200240, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou Unive
Bovine coronavirus (BCoV), a member of the Betacoronavirus genus, causes severe calf gastroenteritis and respiratory disease, resulting in a significant loss of livestock. Coronavirus non-structural protein 14 (nsp14) is involved in viral RNA replication and modification and subverts host immune regulatory pathways to facilitate immune evasion. In this study, we demonstrated that BCoV nsp14 mediates TNF receptor-associated factor 3 (TRAF3) degradation through the coordinated targeting of the ubiquitin-proteasome and autophagy-lysosomal pathways, thereby potentiating viral replication.
View Article and Find Full Text PDFHeart Rhythm
September 2025
Translational Cardiology Group, Health Research Institute, Santiago de Compostela, Spain; CIBERCV, Madrid, España. Electronic address:
Background: High % of low-voltage area (LVA), a surrogate of scar, is associated with atrial fibrillation (AF) recurrence after pulmonary vein isolation (PVI). Noninvasive biomarkers of LVA are a medical need for PVI decision.
Objective: We aimed to identify the proteome profile of plasma extracellular vesicles (EVs) associated with high % LVA, their cellular origin, and their regulation by hyperglycemia.
Cancer Lett
September 2025
Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China. Electronic address:
Dendritic cells (DCs) are the most powerful antigen-presenting cells (APCs) within the tumour microenvironment (TME), where they orchestrate T cell-mediated anti-tumour immunity and can also be reprogrammed to promote the progression of tumours in the TME. Extracellular vesicles (EVs) are very small and they are secreted by cells and wrapped in lipid bilayers that shuttle bioactive cargoes, including proteins, nucleic acids, and metabolites, to recipient cells, thereby influencing the progression of diseases, including cancer. DC-derived EVs (DC-EVs) play pivotal roles in the TME by mediating crosstalk with other immune and stromal cells to modulate inflammatory responses, angiogenesis, cell death, and immune evasion, thereby regulating the development and progression of tumours.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Center, 68 HaMaccabim Road, Rishon Letzion 7505101, Israel.
Cultivating fat for edible tissue presents significant challenges, due to the high costs associated with growth and differentiation factors, alongside the poor viability of adipocytes resulting from cell clustering. Additionally, there is a gap in research regarding the rapid accumulation of fats within cells. To that end, this study presents the development of a biodegradable soy protein colloidosome system for an efficient application: direct delivery of oils into bovine satellite cells, enabling rapid intracellular fat accumulation without the need for adipogenic differentiation.
View Article and Find Full Text PDF