98%
921
2 minutes
20
A 42-year climate data record of global sea surface temperature (SST) covering 1980 to 2021 has been produced from satellite observations, with a high degree of independence from in situ measurements. Observations from twenty infrared and two microwave radiometers are used, and are adjusted for their differing times of day of measurement to avoid aliasing and ensure observational stability. A total of 1.5 × 10 locations are processed, yielding 1.4 × 10 SST observations deemed to be suitable for climate applications. The corresponding observation density varies from less than 1 km yr in 1980 to over 100 km yr after 2007. Data are provided at their native resolution, averaged on a global 0.05° latitude-longitude grid (single-sensor with gaps), and as a daily, merged, gap-free, SST analysis at 0.05°. The data include the satellite-based SSTs, the corresponding time-and-depth standardised estimates, their standard uncertainty and quality flags. Accuracy, spatial coverage and length of record are all improved relative to a previous version, and the timeseries is routinely extended in time using consistent methods.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10980736 | PMC |
http://dx.doi.org/10.1038/s41597-024-03147-w | DOI Listing |
BMC Plant Biol
September 2025
Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria, Egypt.
Background: Because of their ecological, aesthetic, and beneficial characteristics, native desert plants are highly significant. They can also be utilized in landscape architecture, particularly in environments with harsh conditions. The present study aims to evaluate the potential utilization of the wild desert plants Pancratium maritimum L.
View Article and Find Full Text PDFEnviron Sci Technol
September 2025
Department of Biomedical Informatics, Harvard Medical School, 10 Shattuck St, Boston, Massachusetts 02115, United States.
Accurate attribution of the areas and populations impacted by climate-related events often relies on linear distance-based methods, where the study unit is assigned temperature data to the closest weather station. We developed a novel method and data pipeline that provides a grid-based measure of exposure to extreme heat and cold events called Grid EXposure (, enabling linkage to individual-level human health data at different spatial scales. GridEX automates the gathering of station-based climatological data and provides estimates of apparent temperature, offering a more comprehensive representation of human thermal comfort and perceived temperature.
View Article and Find Full Text PDFProg Mol Biol Transl Sci
September 2025
Heidelberg Institute of Global Health (HIGH), Faculty of Medicine and University Hospital, Heidelberg University, Heidelberg, Germany. Electronic address:
Climate change poses a growing threat to human health, increasing exposure to extreme environmental conditions. Wearable biosensors provide real-time monitoring of physiological responses to heat stress, including cardiovascular strain, thermoregulatory disruptions, sleep disturbances, and biomarkers of heat-related illnesses. These devices also assess behavioural adaptations, such as reduced physical activity, offering insights into physiological resilience and susceptibility.
View Article and Find Full Text PDFIntegr Environ Assess Manag
September 2025
Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa.
Pesticides are widely used to meet the food demands of a growing population, with various types used to control pests depending on the crops grown. Rainfall, overspray, and runoff from agricultural fields can wash these insecticides into water bodies, posing documented environmental risks. Imidacloprid is commonly used in Afrotropical regions such as South Africa, yet limited information is available on its toxicity to aquatic ecosystems within this climate region.
View Article and Find Full Text PDFAdv Mater
September 2025
School of Architecture, Southeast University, Nanjing, 210096, China.
Buildings are increasingly being conceived as dynamic systems that interact with their surroundings to optimize energy performance and enhance occupant comfort. This evolution in architectural thinking draws inspiration from biological systems, where the building envelope functions like a thermally responsive "skin" that can autonomously adjust its optical and thermal properties in response to environmental temperature changes. Among the many approaches developed for smart building envelopes, passive thermoresponsive spectral modulation systems have attracted growing interest due to their structural simplicity and low energy demand.
View Article and Find Full Text PDF