98%
921
2 minutes
20
Throughout the past decades, amphipathic peptide-based hydrogels have proven to be promising materials for biomedical applications. Amphipathic peptides are known to adopt β-sheet configurations that self-assemble into fibers that then interact to form a hydrogel network. A fundamental understanding of how the peptide sequence alters the structural properties of the hydrogels would allow for a more rational design of novel peptides for a variety of biomedical applications in the future. Therefore, the current work investigates how changing the type of amino acid, the amphipathic pattern, and the peptide length affects the secondary structure, fiber characteristics, and stiffness of peptide-based hydrogels. Hereto, seven amphipathic peptides of different sequence and length, four of which have not been previously reported, based on and including the hexapeptide H-Phe-Gln-Phe-Gln-Phe-Lys-NH, are synthesized and thoroughly characterized by circular dichroism (CD), Fourier Transform Infrared (FTIR) spectroscopy, Wide Angle X-ray Scattering (WAXS), Small Angle X-ray Scattering (SAXS), Transmission Electron Microscopy (TEM), and Thioflavin T (ThT) fibrillization assays. The results show that a high amount of regularly spaced β-sheets, a high amount of fibers, and fiber bundling contribute to the stiffness of the hydrogel. Furthermore, a study of the time-dependent fibril formation process reveals complex transient dynamics. The peptide strands structure through an intermediate helical state prior to β-sheet formation, which is found to be concentration- and time-dependent.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mabi.202300579 | DOI Listing |
Front Immunol
September 2025
Division of Rheumatology, Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea.
Background: Cryopyrin-associated periodic syndrome (CAPS) is an autoinflammatory disease caused by a gain-of-function mutation in the gene, which regulates inflammasome-mediated interleukin-1β (IL-1β) production. This leads to recurrent episodes of fever, rash, and arthritis, typically beginning in childhood.
Objective: To demonstrate the role of a missense mutation, c.
Brain Commun
August 2025
Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA.
was identified in human and mouse Huntington's disease brain as the pathogenic exon 1 mRNA generated from aberrant splicing between exon 1 and 2 of that contributes to aggregate formation and neuronal dysfunction. Detection of the huntingtin exon 1 protein (HTT1a) has been accomplished with Meso Scale Discovery, Homogeneous Time Resolved Fluorescence and immunoprecipitation assays in Huntington's disease knock-in mice, but direct detection in homogenates by gel electrophoresis and western blot assay has been lacking. Subcellular fractions prepared from mouse and human Huntington's disease brain were separated by gel electrophoresis and probed by western blot with neoepitope monoclonal antibodies 1B12 and 11G2 directed to the C-terminal eight residues of HTT1a.
View Article and Find Full Text PDFSAR QSAR Environ Res
August 2025
Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China (UESTC), Chengdu, China.
Peptide quantitative structure-activity relationship (pQSAR) has been widely used in the computational peptidology community to model, predict and explain the activity and function of bioactive peptides. Various amino acid descriptors (AADs) have been developed to characterize the residue building blocks of peptides at sequence level. However, a significant issue is that the total number of AAD-characterized descriptors is proportional to peptide length, thus causing inconsistency in the resulting descriptor vector matrix for a panel of length-varying peptide sequences (LVPSs), which cannot be engaged in pQSAR modelling.
View Article and Find Full Text PDFHum Vaccin Immunother
December 2025
Beijing Institute of Tropical Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory for Research on Prevention and Treatment of Tropical Diseases, Beijing, China.
Dengue virus (DENV) is an important arthropod-borne virus that poses a global health threat, with half of the world's population at risk of infection. Currently, there is a lack of safe and effective vaccines for its prevention. Antibody-dependent enhancement (ADE) occurs when cross-reactive antibodies fail to neutralize heterologous DENV serotypes effectively, facilitating viral entry into Fc receptor-bearing cells and leading to more severe disease.
View Article and Find Full Text PDFPLoS One
September 2025
Department of Biological Sciences, University of Limerick, Limerick, Ireland.
This study investigates the interaction between circadian rhythms and lipid metabolism disruptions in the context of obesity. Obesity is known to interfere with daily rhythmicity, a crucial process for maintaining brain homeostasis. To better understand this relationship, we analyzed transcriptional data from mice fed with normal or high-fat diet, focusing on the mechanisms linking genes involved with those regulating circadian rhythms.
View Article and Find Full Text PDF