Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Viruses impact microbial systems through killing hosts, horizontal gene transfer, and altering cellular metabolism, consequently impacting nutrient cycles. A virus-infected cell, a "virocell," is distinct from its uninfected sister cell as the virus commandeers cellular machinery to produce viruses rather than replicate cells. Problematically, virocell responses to the nutrient-limited conditions that abound in nature are poorly understood. Here we used a systems biology approach to investigate virocell metabolic reprogramming under nutrient limitation. Using transcriptomics, proteomics, lipidomics, and endo- and exo-metabolomics, we assessed how low phosphate (low-P) conditions impacted virocells of a marine Pseudoalteromonas host when independently infected by two unrelated phages (HP1 and HS2). With the combined stresses of infection and nutrient limitation, a set of nested responses were observed. First, low-P imposed common cellular responses on all cells (virocells and uninfected cells), including activating the canonical P-stress response, and decreasing transcription, translation, and extracellular organic matter consumption. Second, low-P imposed infection-specific responses (for both virocells), including enhancing nitrogen assimilation and fatty acid degradation, and decreasing extracellular lipid relative abundance. Third, low-P suggested virocell-specific strategies. Specifically, HS2-virocells regulated gene expression by increasing transcription and ribosomal protein production, whereas HP1-virocells accumulated host proteins, decreased extracellular peptide relative abundance, and invested in broader energy and resource acquisition. These results suggest that although environmental conditions shape metabolism in common ways regardless of infection, virocell-specific strategies exist to support viral replication during nutrient limitation, and a framework now exists for identifying metabolic strategies of nutrient-limited virocells in nature.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11170926PMC
http://dx.doi.org/10.1093/ismejo/wrae055DOI Listing

Publication Analysis

Top Keywords

nutrient limitation
12
virocell metabolic
8
metabolic reprogramming
8
low-p imposed
8
relative abundance
8
virocell-specific strategies
8
environment-specific virocell
4
reprogramming viruses
4
viruses impact
4
impact microbial
4

Similar Publications

The global shortage of suitable donor kidneys is the primary challenge in kidney transplantation, and it is exacerbated by ageing donors with increased numbers of health issues. Improving organ assessment, preservation and conditioning could enhance organ utilization and patient outcomes. Hypothermic machine perfusion (HMP) is associated with better results than static cold storage by reducing delayed graft function and improving short-term graft survival, especially in kidneys recovered from marginal-quality donors.

View Article and Find Full Text PDF

Decentralized wastewater management using treatment wetlands: Effective removal of antibiotics, resistance genes and organic micropollutants.

Sci Total Environ

September 2025

Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark; WATEC, Centre for Water Technology, Aarhus University, Ny Munkegade 120, 8000 Aarhus C, Denmark.

Treatment wetlands (TW) are a popular choice for decentralized wastewater treatment, with substantial documentation on their capacity to manage conventionally monitored pollutants. However, most insights into their effectiveness against emerging contaminants come from lab and mesocosm studies with a limited number of compounds, highlighting knowledge gaps in their performance at full scale. This study provides a first long-term, full-scale assessment of TW ability to remove a large number of organic micropollutants (OMPs) and manage antibiotic resistance under real-world conditions.

View Article and Find Full Text PDF

Phosphorus limitation induces membrane lipid remodeling in aquatic phytoplankton.

Mar Environ Res

September 2025

Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, PR China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266237, PR China; University of Chinese Academ

Phosphorus (P) is a critical limiting nutrient for phytoplankton growth in aquatic ecosystems. Under P-limitation, phytoplankton adapt by remodeling membrane lipids, replacing phospholipids (PLs) with non-P lipids such as sulfolipid sulfoquinovosyldiacylglycerol (SQDG) and betaine lipids (BLs). This mechanism is essential for reevaluating the relationship between phosphate (PO) concentrations and primary productivity.

View Article and Find Full Text PDF

Optimizing calf feeding strategies is critical for improving performance, health, and weaning transitions of preweaning animals. Despite the updated National Academies of Sciences, Engineering, and Medicine (NASEM, 2021) , decision support tools integrating these equations for simulating optimized calf feeding strategies remain limited. To address this gap, we developed and tested the CalfSim, a free, user-friendly decision support tool designed to simulate and optimize feeding plans for dairy calves.

View Article and Find Full Text PDF

Purpose Of The Review: This review aimed to summarize current evidence on the effectiveness of medical nutrition therapy (MNT) in the management of obesity and endometriosis, with a focus on dietary patterns such as the Mediterranean and Ketogenic diets, as well as nutritional supplementation. Additionally, it highlights the central role of the clinical nutritionist in implementing individualized, evidence-based interventions within multidisciplinary care.

Recent Findings: Although the literature reports the existence of an inverse relationship between risk of endometriosis and body mass index, clinical evidence jointly reports that a condition of obesity is associated with greater disease severity.

View Article and Find Full Text PDF